The vertex is exactly half way between directrix and focus. In this case the vertex is (8,-7)
(h,k)
P is the distance between the vertex and either the directrix or focus, in this case p = 1.
a = 1/(4p) or 1/(4*1) or 1/4
write the equation in vertex form
y = a(x-h)^2 + k
y = 1/4(x-8)^2 -7
Answer:
•cos(s+t) = cos(s)cos(t) - sin(s)sin(t) = (-⅖).(-⅗) - (√21 /5).(⅘) = +6/25 - 4√21 /25 = (6-4√21)/25
•cos(s-t) = cos(s)cos(t) + sin(s)sin(t) = (-⅖).(-⅗) + (√21 /5).(⅘) = +6/25 + 4√21 /25 = (6+4√21)/25
cos(t) = ±√(1 - sin²(t)) → -√(1 - sin²(t)) = -√(1 - (⅘)²) = -⅗
sin(s) = ±√(1 - cos²(s)) → +√(1- cos²(s)) = +√(1 - (-⅖)²) = √21 /5
4000000+500000+8000+200+20+7
F(x) = x^3 + 2x^2 - x - 2
<span>f(x) = x^2(x + 2) - (x + 2) </span>
<span>f(x) = (x^2 - 1)(x + 2) </span>
<span>f(x) = (x + 1)(x - 1)(x + 2) </span>
<span>Roots: -1, 1, -2 </span>