Taking

and differentiating both sides with respect to

yields
![\dfrac{\mathrm d}{\mathrm dx}\bigg[3x^2+y^2\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[7\bigg]\implies 6x+2y\dfrac{\mathrm dy}{\mathrm dx}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B3x%5E2%2By%5E2%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B7%5Cbigg%5D%5Cimplies%206x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%3D0)
Solving for the first derivative, we have

Differentiating again gives
![\dfrac{\mathrm d}{\mathrm dx}\bigg[6x+2y\dfrac{\mathrm dy}{\mathrm dx}\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[0\bigg]\implies 6+2\left(\dfrac{\mathrm dy}{\mathrm dx}\right)^2+2y\dfrac{\mathrm d^2y}{\mathrm dx^2}=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B6x%2B2y%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5D%3D%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cbigg%5B0%5Cbigg%5D%5Cimplies%206%2B2%5Cleft%28%5Cdfrac%7B%5Cmathrm%20dy%7D%7B%5Cmathrm%20dx%7D%5Cright%29%5E2%2B2y%5Cdfrac%7B%5Cmathrm%20d%5E2y%7D%7B%5Cmathrm%20dx%5E2%7D%3D0)
Solving for the second derivative, we have

Now, when

and

, we have
Answer:
No
Step-by-step explanation:
No because the measure of two sides are always greater than the third side
Subscribe my Gaming channel Sameer Duos
Answer:
78π m²
Step-by-step explanation:
The lateral area of the cylinder is ...
LA = 2πrh
LA = 2π(3 m)(8 m) = 48π m²
The lateral area of one cone is ...
LA = πrh . . . . where h is the slant height
LA = π(3 m)(5 m) = 15π m²
Then the total surface area of the figure is the area of the two cones plus that of the cylinder:
S = 2(cone area) + cylinder area
S = 2(15π m²) +(48π m²)
S = 78π m²
Answer: 36 seconds
Step-by-step explanation:
A: 9, 18, 27, 36
B: 12, 24, 36
Step-by-step explanation:
you move -5y to the other side.
25=-5y-3xsubtract 25 both sides
0=-5y-3x-25then add 5y both sides
5y=-3x-25divide 5 both sides
y=-3/5x-5
m=-3/5 do rise over runrise/run
b=(0,-5)plot it
3 down and 5 to right or 3 up and 5 left