1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mario62 [17]
3 years ago
7

Find the product: 9x(x3-4x2-3x)

Mathematics
2 answers:
nekit [7.7K]3 years ago
8 0

Answer:

9x^4 - 36x^3 - 27x^2

Step-by-step explanation:

9x(x^3 - 4x^2 - 3x)

Multiply 9x to each of the terms in the parentheses:

9x^4 - 36x^3 - 27x^2

Andre45 [30]3 years ago
7 0

Answer:

9x^4-36x^3-27x^2

Step-by-step explanation:

assuming those are exponents

You might be interested in
What is the prime factorization for 20
NeTakaya
2x2x5 is the prime factorization
4 0
3 years ago
Read 2 more answers
What is -3x-32=-2(5-4x)
san4es73 [151]

Answer:

x=−2

Step-by-step explanation:

Step 1: Simplify both sides of the equation.

−3x−32=−2(5−4x)

−3x+−32=(−2)(5)+(−2)(−4x)(Distribute)

−3x+−32=−10+8x

−3x−32=8x−10

Step 2: Subtract 8x from both sides.

−3x−32−8x=8x−10−8x

−11x−32=−10

Step 3: Add 32 to both sides.

−11x−32+32=−10+32

−11x=22

Step 4: Divide both sides by -11.

−11x

−11

=

22

−11

5 0
3 years ago
Read 2 more answers
Determine whether the statement is always, sometimes, or never true. Complete the explanation. In parallelogram MNPQ, the diagon
Crank
This is never true. In a parallelogram, the diagonals will always bisect each other. Thus, each of these segments would always have to be equal. 
4 0
3 years ago
Would appreciate the help ! ​
aleksandr82 [10.1K]

This is one pathway to prove the identity.

Part 1

\frac{\sin(\theta)}{1-\cos(\theta)}-\frac{1}{\tan(\theta)} = \frac{1}{\sin(\theta)}\\\\\frac{\sin(\theta)}{1-\cos(\theta)}-\cot(\theta) = \frac{1}{\sin(\theta)}\\\\\frac{\sin(\theta)}{1-\cos(\theta)}-\frac{\cos(\theta)}{\sin(\theta)} = \frac{1}{\sin(\theta)}\\\\\frac{\sin(\theta)*\sin(\theta)}{\sin(\theta)(1-\cos(\theta))}-\frac{\cos(\theta)(1-\cos(\theta))}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\

Part 2

\frac{\sin^2(\theta)}{\sin(\theta)(1-\cos(\theta))}-\frac{\cos(\theta)-\cos^2(\theta)}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\\frac{\sin^2(\theta)-(\cos(\theta)-\cos^2(\theta))}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\\frac{\sin^2(\theta)-\cos(\theta)+\cos^2(\theta)}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\

Part 3

\frac{\sin^2(\theta)+\cos^2(\theta)-\cos(\theta)}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\\frac{1-\cos(\theta)}{\sin(\theta)(1-\cos(\theta))} = \frac{1}{\sin(\theta)}\\\\\frac{1}{\sin(\theta)} = \frac{1}{\sin(\theta)} \ \ {\checkmark}\\\\

As the steps above show, the goal is to get both sides be the same identical expression. You should only work with one side to transform it into the other. In this case, the left side transforms while the right side stays fixed the entire time. The general rule is that you should convert the more complicated expression into a simpler form.

We use other previously established or proven trig identities to work through the steps. For example, I used the pythagorean identity \sin^2(\theta)+\cos^2(\theta) = 1 in the second to last step. I broke the steps into three parts to hopefully make it more manageable.

3 0
3 years ago
Need some help, kinda stuck
ElenaW [278]

Answer:

7/4

Step-by-step explanation:

\displaystyle\frac{2 +  \sqrt{ - 3} }{2} ( \frac{2 -  \sqrt{ - 3} }{2} )~~~~~~

Evaluate.

Solution:

Rewrite it as,

  • \displaystyle\frac{2 +    \sqrt{  - 1 }  \sqrt{  3} }{2} ( \frac{2 -  \sqrt{ - 1}  \sqrt{3} }{2} )
  • \displaystyle\frac{2 +  i\sqrt{  3} }{2} ( \frac{2 -  i\sqrt{ 3} }{2} )~~~~~~

Multiplying them,

  • \displaystyle\frac{(2 +  i\sqrt{  3})\times(2 - i \sqrt{3})   }{2 \times 2}

  • \displaystyle\frac{(2 +  i\sqrt{  3})\times(2 - i \sqrt{3})   }{4}

Applying Distributive property,

  • \displaystyle\frac{2(2 +  i\sqrt{  3}) +  \: i \sqrt{3} (2 - i \sqrt{3})   }{4}

  • \cfrac{2 \times 2 + 2( - i \sqrt{3} ) + i \sqrt{3}(2 - i \sqrt{3} ) }{4}

  • \cfrac{2 \times 2 + 2( - i \sqrt{3}) + i \sqrt{3}   \times 2 + i \sqrt{3} ( - i \sqrt{3}) }{4}

Combining each terms,

  • \cfrac{4 - 2i \sqrt{3} + 2i \sqrt{3}   + 3}{4}
  • \cfrac{ - 2i \sqrt{3}  + 2i \sqrt{3} + 7 }{4}
  • \boxed{\cfrac{ 7}{4} }

Last Choice is accurate.

7 0
2 years ago
Read 2 more answers
Other questions:
  • Write a rule in coordinate notation that translates a figure 7 units to the right and 3 units down
    10·2 answers
  • Y= -5x-10<br> y=6x+12<br><br> solve by substitution
    11·2 answers
  • Find last year’s salary if after. 2% pay rate, this year’s salary is $35,700
    10·1 answer
  • Write a function rule for the table days/cost to rent a truck
    10·2 answers
  • Which functions have an axis of symmetry of x = -2? Check all that apply. A. f(x) = x^2 + 4x + 3 B. f(x) = x^2 - 4x - 5 C. f(x)
    14·1 answer
  • Please help me out!!!!!!!
    5·1 answer
  • What is 4(x 2) = 48 simplified?
    5·1 answer
  • What is the square root of 6 <br> Sub to my friend plssss
    6·1 answer
  • What is the value of tangent theta in the unit circle below? One-half StartFraction StartRoot 3 EndRoot Over 3 EndFraction Start
    13·2 answers
  • Find area of the composite figure..
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!