Answer:
Step-by-step explanation:
0.1 x + 40 = 76.5
0.1x = 36.5
x = 36.5 ÷ 0.1 = 365
Answer:
Step-by-step explanation:
P(x)= x³ - x² - 18
Q(x) = P(2x-1)
= (2x-1)³ - (2x-1)² -18
= (2x)³ - 3*(2x)² * 1 + 3*2x* 1² - 1³ - [ (2x)² - 2*2x*1 + 1 ] - 18
=8x³ - 12x² + 6x - 1 - [4x² - 4x +1 ] - 18
= 8x³ - 12x² + 6x - 1 - 4x² + 4x - 1 - 18
= 8x³ - 16x² + 10x - 20
Hint : (a-b)³ = a³-3a²b+3ab²-b³
(a-b)² = a² -2ab + b²
<h3>Answer: Choice C</h3>
RootIndex 12 StartRoot 8 EndRoot Superscript x
12th root of 8^x = (12th root of 8)^x
![\sqrt[12]{8^{x}} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D)
=========================================
Explanation:
The general rule is
![\sqrt[n]{x} = x^{1/n}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B1%2Fn%7D)
so any nth root is the same as having a fractional exponent 1/n.
Using that rule we can say the cube root of 8 is equivalent to 8^(1/3)
![\sqrt[3]{8} = 8^{1/3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B8%7D%20%3D%208%5E%7B1%2F3%7D)
-----
Raising this to the power of (1/4)x will have us multiply the exponents of 1/3 and (1/4)x like so
(1/3)*(1/4)x = (1/12)x
In other words,


-----
From here, we rewrite the fractional exponent 1/12 as a 12th root. which leads us to this
![8^{(1/12)x} = \sqrt[12]{8^{x}}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Csqrt%5B12%5D%7B8%5E%7Bx%7D%7D%20)
![8^{(1/12)x} = \left(\sqrt[12]{8}\right)^{x}](https://tex.z-dn.net/?f=8%5E%7B%281%2F12%29x%7D%20%3D%20%5Cleft%28%5Csqrt%5B12%5D%7B8%7D%5Cright%29%5E%7Bx%7D%20)
X = 75°
Y = 105°
Z =75°
<em> </em><em><u>I Took the Assignment</u></em>