The correct answer is A. Standardized table is useful to use as a visual for the patient
The first, second, and fourth statements are correct.
Answer:
A) exergonic; protons; glycolysis
Explanation:
The synthesis of ATP from ADP and Pi is an exergonic reaction. In mitochondria, ATP synthesis is driven by the flow of proton down a concentration gradient established by glycolysis.
<span>You are likely talking about aerobic respiration rather then just glycolysis based on the options: The third option seems best, pyruvate is heavily oxidized during the Kreb's cycle and removed as CO2.
Wrong options
Option1- FADH2 is also another highly energetic molecule produced during
Option2- oxidation of pyruvate is a highly directional process and can be considered irreversible in the cell
Option4- Aerobic respiration RELEASES energy from pyruvate and the into NADH/FADH which is then captured by the electron transport chain. An exergonic rxn would take in energy and would not happen spontaneously
This can be looked from different perspectives, but let me know if my answer made sense. </span>
Answer:
Signal transduction is what allows cells to respond to the influences of the environment around them, providing cells with proper growth and normal cell function.
Explanation:
Living organisms have developed a wide variety of complex processes to transmit signals from the outside to the inside to elicit an adequate cellular response. Defects in these molecular pathways can lead to very different disorders, such as diabetes, cancer, and psychotic illnesses. Signal transduction is the process by which a cell converts a certain signal or external stimulus into another signal or specific response, that is, it is the mechanism by which a cell responds to the stimuli it receives from the environment through diffusion. of those signals to its internal compartments. First, a signaling molecule (also called a ligand) needs to activate a specific receptor on the cell's membrane or cytoplasm. Ligand-receptor binding is very specific; they are recognized as a key and a lock. Second messengers are molecules that allow the received signal to be amplified at the intracellular level. The binding of a ligand to the receptor can generate hundreds of second messenger molecules that, in turn, can modify thousands of effector molecules and give rise to different responses. Cells recognize, integrate, and respond to multiple signals from their environment due to signal transduction, providing cells with a normal cell function.