Answer:
x= -8 , y = 5
x= 25/4 , y = 1/4
Step-by-step explanation:
substitute first eqn into the second eqn:
(7 - 3y)^2 -y^2 = 39
49 - 42y + 9y^2 - y^2 = 39
8y^2 - 42y +10 =0
4y^2 - 21y + 5 = 0
(4y-1) (y-5) = 0
y= 1/4 , 5
when y=1/4
x = 7- 3/4
=25/4
when y= 5
x = 7- 15
= -8
Scale Drawings are drawings that are used to show the true size of something.
Scale drawings are most commonly used in maps, or in large scale drawings. These show the scale of something. It may show that 1cm is equivalent to 1km, which would allow someone to measure the map to see how far the distance it. It also allows a map to be made smaller, and less detailed- making it often easier to read.
Hope this helps :)
Answer:
a) From the chart crated with Microsoft Excel, we have that the correlation coefficient, r = √0.8581 ≈ 0.93 to the nearest hundredth
The steps used includes
1) Inputting the given data into the cells on a Microsoft Excel spread sheet
2) Highlighting and sorting the data in the cells in order of increasing Rainfall
3) Generating a dot plot using the sorted data from above
4) Adding the trend line, Square of the linear regression, and the trend line equation
5) Adding the axis labels
(b) The correlation coefficient states that there is a strong positive correlation between the monthly rainfall and and Umbrella sales
Step-by-step explanation:
First you gotta change it to a fraction, which would be 6/10 because it's in the tenths place. Now simplify it, which would be 3/5.
Answer & Step-by-step explanation:
Regression studies the relationship between independent / explanatory (causal) variable, dependent / response (effected) variable. Scatter plot is a diagrammatic representation of regression.
Aspartame Concentration, being a toxic substance, is likely to have negative regression relationship with mice survival rate. It implies that higher concentration leads to lower mice survival, & lower concentration leads to higher mice survival.
The relationship can be strong or weak, depicted by 'r' magnitude, depending upon the intensity of concentration impact on survival. If more percent of the variation in survival rate can be explained by variations in concentrations, regression coefficient is high. If less percent of the variation in survival rate can be explained by variations in concentrations, regression coefficient is low