1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
3 years ago
12

Is the number 1.13 greater than, less than or equal to 1

Mathematics
1 answer:
Fantom [35]3 years ago
3 0
1.13 is greater than 1
You might be interested in
Find the maximum volume of a rectangular box that is inscribed in a sphere of radius r.
zvonat [6]

Answer:

The maximum volume of a box inscribed in a sphere of radius r is a cube with volume \frac{8r^3}{3\sqrt{3}}.

Step-by-step explanation:

This is an optimization problem; that means that given the constraints on the problem, the answer must be found without assuming any shape of the box. That feat is made through the power of derivatives, in which all possible shapes are analyzed in its equation and the biggest -or smallest, given the case- answer is obtained. Now, 'common sense' tells us that the shape that can contain more volume is a symmetrical one, that is, a cube. In this case common sense is correct, and the assumption can save lots of calculations, however, mathematics has also shown us that sometimes 'common sense' fails us and the answer can be quite unintuitive. Therefore, it is best not to assume any shape, and that's how it will be solved here.

The first step of solving a mathematics problem (after understanding the problem, of course) is to write down the known information and variables, and make a picture if possible.

The equation of a sphere of radius r is x^2 + y^2 + z^2=r^2. Where x, y and z are the distances from the center of the sphere to any of its points in the border. Notice that this is the three-dimensional version of Pythagoras' theorem, and it means that a sphere is the collection of coordinates in which the equation holds for a given radius, and that you can treat this spherical problem in cartesian coordinates.

A box that touches its corners with the sphere with arbitrary side lenghts is drawn, and the distances from the center of the sphere -which is also the center of the box- to each cartesian axis are named x, y and z; then, the complete sides of the box are measured  2x,  2y and 2z. The volume V of any rectangular box is given by the product of its sides, that is, V=2x\cdot 2y\cdot 2z=8xyz.

Those are the two equations that bound the problem. The idea is to optimize V in terms of r, therefore the radius of the sphere must be introduced into the equation of the volumen of the box so that both variables are correlated. From the equation of the sphere one of the variables is isolated: z^2=r^2-x^2 - y^2\quad \Rightarrow z= \sqrt{r^2-x^2 - y^2}, so it can be replaced into the other: V=8xy\sqrt{r^2-x^2 - y^2}.

But there are still two coordinate variables that are not fixed and cannot be replaced or assumed. This is the point in which optimization kicks in through derivatives. In this case, we have a cube in which every cartesian coordinate is independent from each other, so a partial derivative is applied to each coordinate independently, and then the answer from both coordiantes is merged into a single equation and it will hopefully solve the problem.

The x coordinate is treated first: \frac{\partial V}{\partial x} =\frac{\partial 8xy\sqrt{r^2-x^2 - y^2}}{\partial x}, in a partial derivative the other variable(s) is(are) treated as constant(s), therefore the product rule is applied: \frac{\partial V}{\partial x} = 8y\sqrt{r^2-x^2 - y^2}  + 8xy \frac{(r^2-x^2 - y^2)^{-1/2}}{2} (-2x) (careful with the chain rule) and now the expression is reorganized so that a common denominator is found \frac{\partial V)}{\partial x} = \frac{8y(r^2-x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}  - \frac{8x^2y }{\sqrt{r^2-x^2 - y^2}} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}}.

Since it cannot be simplified any further it is left like that and it is proceed to optimize the other variable, the coordinate y. The process is symmetrical due to the equivalence of both terms in the volume equation. Thus, \frac{\partial V}{\partial y} = \frac{8x(r^2-x^2 - 2y^2)}{\sqrt{r^2-x^2 - y^2}}.

The final step is to set both partial derivatives equal to zero, and that represents the value for x and y which sets the volume V to its maximum possible value.

\frac{\partial V}{\partial x} = \frac{8y(r^2-2x^2 - y^2)}{\sqrt{r^2-x^2 - y^2}} =0 \quad\Rightarrow r^2-2x^2 - y^2=0 so that the non-trivial answer is selected, then r^2=2x^2+ y^2. Similarly, from the other variable it is obtained that r^2=x^2+2 y^2. The last equation is multiplied by two and then it is substracted from the first, r^2=3 y^2\therefore y=\frac{r}{\sqrt{3}}. Similarly, x=\frac{r}{\sqrt{3}}.

Steps must be retraced to the volume equation V=8xy\sqrt{r^2-x^2 - y^2}=8\frac{r}{\sqrt{3}}\frac{r}{\sqrt{3}}\sqrt{r^2-\left(\frac{r}{\sqrt{3}}\right)^2 - \left(\frac{r}{\sqrt{3}}\right)^2}=8\frac{r^2}{3}\sqrt{r^2-\frac{r^2}{3} - \frac{r^2}{3}} =8\frac{r^2}{3}\sqrt{\frac{r^2}{3}}=8\frac{r^3}{3\sqrt{3}}.

6 0
3 years ago
Someone please help me on number 30. Thank you
timurjin [86]

8.9-3.3j=-2.2j+2.3
add 3.3j to both sides
8.9=1.1j+2.3
subtract 2.3 from both sides
6.6=1.1j
divide both sides by 1.1
6=j
7 0
3 years ago
BRAINIEST FOR CORRECT ANSWER!! :))) ——————-
Morgarella [4.7K]
Answer:
3 < c < 13
Step-by-step explanation:
A triangle is known to have 3 sides: Side a, Side b and Side c.
For a triangle, one of the three sides is longer than the other two sides. (The only exception is when we are told specifically that a triangle is an equilateral triangle, where all the 3 sides are equal to each other).
To solve the above question, we would be using the Triangle Inequality Theorem.
The Triangle Inequality Theorem states that the summation or addition of the lengths of any two sides of a triangle is greater than the length of the third side.
Side a + Side b > Side c
Side a + Side c > Side b
Side b + Side c > Side a
For the above question, we have 2 possible side lengths for the third side of the triangle. We are given in the above question,
side (a) = 5
side (b) = 8
Let's represent the third side as c
To solve for the above question,we would be having the following Inequality.
= b - a < c < b + a
= 8 - 5 < c < 8 + 5
= 3 < c < 13
4 0
3 years ago
The class scores of a history test have a normal distribution with a mean Mu = 79 and a standard deviation Sigma = 7. If Opal’s
e-lub [12.9K]

Using the normal distribution, we got that expression for the z-score of her test score is

z= \frac{72-29}{7} \\\\z=-7/7\\\\z=-1

<h3>What is Normal Probability Distribution?</h3>

it's a type of probability distribution which is  symmetric about the mean, it gives data near the mean are more frequent than data far from the mean.

Given that mean =\mu=79

and standard deviation =\sigma = 7

X=73

we know that formula of z-score is

z=\frac{X-\mu}{\sigma}

Hence Z-score can be calculated as

z= \frac{72-29}{7} \\\\z=-7/7\\\\z=-1

Using the normal distribution, we got that expression for the z-score of her test score is

z= \frac{72-29}{7} \\\\z=-7/7\\\\z=-1

To learn more about the normal distribution visit : brainly.com/question/24663213

3 0
3 years ago
Please help me out with this problem :)
Dennis_Churaev [7]

180°(n - 2) = 3600°

n - 2 = 20

n = 22

8 0
3 years ago
Read 2 more answers
Other questions:
  • Write nine and thirty-six hundredths with a decimal point
    11·1 answer
  • Lisa wants to frame her little brother's drawing as a gift to her mother. The rectangular drawing is 43.5 cm by 934 millimeters.
    14·1 answer
  • 1/2 (x-4/5)=3/5
    10·1 answer
  • The area of a circle with the radius 3 feet is ____ ft^2 ? Rounded to the nearest hundredths
    7·2 answers
  • Someone help me im struggling.
    5·1 answer
  • Explain what means for a number to be a solution of an inequality
    9·1 answer
  • X<br> PLEASE ANSWERRRRR AS SOON AS POSSIBLE
    13·1 answer
  • Can you help meeeeeeeeeeeeeeeeeee
    5·1 answer
  • Someone help me please. I think it’s 35 but I’m not sure
    14·1 answer
  • PLEASE ASAP! If OP = 64, PQ = 76 OQ = 62, ST PLEASE LOOK AT ATTACHED PICTURE
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!