Answer:
skewed left i believe please mark brainlist if this was correct if not let me know and i can review it!
have a great day, you deserve to treat yourself !!
Step-by-step explanation:
Next time make it more easyer
The point where the lines intersect is (0, 0)
Answer:
![\sin(90^{\circ} - x)=\frac{1}{3}](https://tex.z-dn.net/?f=%5Csin%2890%5E%7B%5Ccirc%7D%20-%20x%29%3D%5Cfrac%7B1%7D%7B3%7D)
Step-by-step explanation:
Given: ![\cos (x)=\frac{1}{3}](https://tex.z-dn.net/?f=%5Ccos%20%28x%29%3D%5Cfrac%7B1%7D%7B3%7D)
We have to find the value of ![\sin(90^{\circ} - x)](https://tex.z-dn.net/?f=%5Csin%2890%5E%7B%5Ccirc%7D%20-%20x%29)
Since Given ![\cos (x)=\frac{1}{3}](https://tex.z-dn.net/?f=%5Ccos%20%28x%29%3D%5Cfrac%7B1%7D%7B3%7D)
Using trigonometric identity,
![\sin(90^{\circ} - \theta)=\cos\theta](https://tex.z-dn.net/?f=%5Csin%2890%5E%7B%5Ccirc%7D%20-%20%5Ctheta%29%3D%5Ccos%5Ctheta)
Thus, for
comparing , we have,
![\theta=x](https://tex.z-dn.net/?f=%5Ctheta%3Dx)
We get,
![\sin(90^{\circ} - x)=\cos x=\frac{1}{3}](https://tex.z-dn.net/?f=%5Csin%2890%5E%7B%5Ccirc%7D%20-%20x%29%3D%5Ccos%20x%3D%5Cfrac%7B1%7D%7B3%7D)
Thus, ![\sin(90^{\circ} - x)=\frac{1}{3}](https://tex.z-dn.net/?f=%5Csin%2890%5E%7B%5Ccirc%7D%20-%20x%29%3D%5Cfrac%7B1%7D%7B3%7D)