Rewriting the equation as a quadratic equation equal to zero:
x^2 - x - 30 = 0
We need two numbers whose sum is -1 and whose product is -30. In this case, it would have to be 5 and -6. Therefore we can also write our equation in the factored form
(x + 5)(x - 6) = 0
Now we have a product of two expressions that is equal to zero, which means any x value that makes either (x + 5) or (x - 6) zero will make their product zero.
x + 5 = 0 => x = -5
x - 6 = 0 => x = 6
Therefore, our solutions are x = -5 and x = 6.
Answer:
4 4/5
Step-by-step explanation:
Answer:
35.786
12(3) - 3(1/2)/4(3) - 5
This is then further simplified to:
36 - 1.5/7
And when you divide 1.5 by 7, the number (rounded) is .214.
Thus, subtract, and gain the final answer of 35.786.
Hope this helps!
Step-by-step explanation:
Can you please mark me brainliest
Answer:
In a quadratic equation of the shape:
y = a*x^2 + b*x + c
we hate that the discriminant is equal to:
D = b^2 - 4*a*c
This thing appears in the Bhaskara's formula for the roots of the quadratic equation:

You can see that the determinant is inside a square root, this means that if D is smaller than zero we will have imaginary roots (the graph never touches the x-axis)
If D = 0, the square root term dissapear, and this implies that both roots of the equation are the same, this means that the graph touches the x axis in only one point, wich coincides with the minimum/maximum of the graph)
If D > 0 we have two different roots, so the graph touches the x-axis in two different points.
Answer:
5,2
Step-by-step explanation:
this is the distance of these points