1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
6

The price of a watch was increased by 20% to £144. What was the price before the increase

Mathematics
1 answer:
MAXImum [283]3 years ago
3 0

Answer:

120 pounds

Step-by-step explanation:

Since the new cost is 144 pounds and this is 20% more,  this is 120% of the original price. Remember 100+20 = 120. To find the original price set up a proportion with these values:

Solve for the original price by cross multiplying numerator with denominator.

x(120) = 144(100)

120x = 14400

x= 120 pounds

You might be interested in
HELP ASAP PLEASE!!!!! <br> what is the factorization of the polynomial below -x^2-2x+48
Veronika [31]

I HOPE IT WILL HELP YOU. I DID HOW I KNOW .

8 0
3 years ago
Data set: 3,6,8,8,14,27 find mean median and range
maks197457 [2]

Answer:

Median is 8

Range is 24

Step-by-step explanation:

Please mark me as the brainliest

6 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
22/30 in lowest terms
Arada [10]
11/15, you would just divide 22/30 in half and that's as far as it can go.
3 0
4 years ago
Read 2 more answers
Solve the following System of Three Equations:<br> x−3y+z=−15<br> 2x+y−z=−2<br> x+y+2z=1
SashulF [63]

Answer:

x = -3 , y = 4 , z = 0

Step-by-step explanation:

Solve the following system:

{x - 3 y + z = -15

2 x + y - z = -2

x + y + 2 z = 1

Hint: | Choose an equation and a variable to solve for.

In the first equation, look to solve for z:

{x - 3 y + z = -15

2 x + y - z = -2

x + y + 2 z = 1

Hint: | Solve for z.

Subtract x - 3 y from both sides:

{z = 3 y + (-x - 15)

2 x + y - z = -2

x + y + 2 z = 1

Hint: | Perform a substitution.

Substitute z = -15 - x + 3 y into the second and third equations:

{z = -15 - x + 3 y

15 + 3 x - 2 y = -2

x + y + 2 (-15 - x + 3 y) = 1

Hint: | Expand the left hand side of the equation x + y + 2 (-15 - x + 3 y) = 1.

x + y + 2 (-15 - x + 3 y) = x + y + (-30 - 2 x + 6 y) = -30 - x + 7 y:

{z = -15 - x + 3 y

15 + 3 x - 2 y = -2

-30 - x + 7 y = 1

Hint: | Choose an equation and a variable to solve for.

In the second equation, look to solve for x:

{z = -15 - x + 3 y

15 + 3 x - 2 y = -2

-30 - x + 7 y = 1

Hint: | Isolate terms with x to the left hand side.

Subtract 15 - 2 y from both sides:

{z = -15 - x + 3 y

3 x = 2 y - 17

-30 - x + 7 y = 1

Hint: | Solve for x.

Divide both sides by 3:

{z = -15 - x + 3 y

x = (2 y)/3 - 17/3

-30 - x + 7 y = 1

Hint: | Perform a substitution.

Substitute x = (2 y)/3 - 17/3 into the third equation:

{z = -15 - x + 3 y

x = (2 y)/3 - 17/3

(19 y)/3 - 73/3 = 1

Hint: | Choose an equation and a variable to solve for.

In the third equation, look to solve for y:

{z = -15 - x + 3 y

x = (2 y)/3 - 17/3

(19 y)/3 - 73/3 = 1

Hint: | Isolate terms with y to the left hand side.

Add 73/3 to both sides:

{z = -15 - x + 3 y

x = (2 y)/3 - 17/3

(19 y)/3 = 76/3

Hint: | Solve for y.

Multiply both sides by 3/19:

{z = -15 - x + 3 y

x = (2 y)/3 - 17/3

y = 4

Hint: | Perform a back substitution.

Substitute y = 4 into the first and second equations:

{z = -x - 3

x = -3

y = 4

Hint: | Perform a back substitution.

Substitute x = -3 into the first equation:

{z = 0

x = -3

y = 4

Hint: | Sort results.

Collect results in alphabetical order:

Answer:  {x = -3 , y = 4 , z = 0

4 0
3 years ago
Other questions:
  • The table shows how the number of sit-ups marla does each day has changed over time. at this rate how many sit-ups will she do o
    14·2 answers
  • It cost 6.64 for 5 balloons how much would it cost for 12 ballons
    8·2 answers
  • Lightbulbs of a certain type are advertised as having an average lifetime of 750 hours. The price of these bulbs is very favorab
    15·1 answer
  • Which pairs make the equation x-9y=12 true
    10·1 answer
  • Find the probability of obtaining exactly one tail when flipping nine coins. Express your as fraction terms on a rounded the nea
    6·1 answer
  • Determina en cada caso, si la función corresponde a una función lineal o a una función afín. a. Y = -5x b. Y = -3x – 2 c. Y = 2x
    5·1 answer
  • Select the three situations that model a sum of zero.
    9·1 answer
  • What is the place value of 3 in 7380529
    15·1 answer
  • Can someone please help me with this, and please only comment if ur sure, Thank you &lt;3
    11·1 answer
  • Camilla's employer pays 90% of the total cost of her family's health insurance
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!