1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sholpan [36]
3 years ago
9

Is the relationship a function? (2.4) (2.5) (2.6) (2.7)

Mathematics
1 answer:
ivann1987 [24]3 years ago
8 0
I believe this relationship would be a function then since all the x-values are different .
You might be interested in
A fruit salad recipe requires 4 cups of grapes per 8 servings. How many cups of grapes are required for 28 servings? A) 6 Cups B
Dafna1 [17]

Answer:

D) 14 Cups

Step-by-step explanation:

4 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Lynn used 3/8 cup of flour and 1/3 cup of sugar. What number is a common denominator for 3/8 and 1/3?
Butoxors [25]

Answer:

24

Step-by-step explanation:

8 and 3 can both go into 24

3/8  -->  3*3=9  8*3=24  --> 9/24

1/3  -->  1*8=8  3*8=24  --> 8/24

3 0
2 years ago
A cell phone company charges a $45 activation fee and $65 per month for their monthly plan. Another cell phone company charges $
Nutka1998 [239]
Whats the question here
3 0
3 years ago
Help Asap i need my work done fast
natka813 [3]

Answer:

2. 4

3. 15

4. integer zero

5 0
2 years ago
Other questions:
  • I need help with all three please help!
    5·2 answers
  • If a pinguen is standing 3 feet above sea level and then dives 10 feet down, what is the depth?
    7·1 answer
  • ωнι¢н σƒ тнє ƒσℓℓσωιηg ιѕ тнє ρσѕιтιση ѕ(10) σƒ тнє мσνιηg вσ∂у αт тιмє т=10ѕ, gινєη тнαт ιтѕ α¢¢єℓєяαтιση, α(т)=9.8 м/ѕ^2 , ιηι
    12·1 answer
  • Dimitri drew a right angle. Then he drew an angle that was 20° larger. What is the measure of the second angle Dimitri drew?
    12·2 answers
  • Do this and explain how you got your answer
    13·1 answer
  • Given O A ‾ ⊥ O C ‾ OA ⊥ OC start overline, O, A, end overline, \perp, start overline, O, C, end overline m ∠ B O C = 6 x − 6 ∘
    12·1 answer
  • 3878÷17 with a remainder
    14·2 answers
  • Plz help me solve this
    14·1 answer
  • What are the zeros of f(x) = x(x-7)?
    13·1 answer
  • based on the simulation, what is the probability that at most 2 of the next 10 callers will have to wait more than 8 minutes to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!