<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
We are asked to express r in terms of A, P, and t.
We first divide both sides of the equation by t, which gives us
,
then, dividing both sides by P, we have
.
Swap the sides:
Finally subtracting 1 from both sides gives us
.
Answer:
The line passing through (-8, 10) and (-1, 4).
Step-by-step explanation:
Two lines are perpendicular if the product of their slopes is -1. The slope of the line in the picture is , so we should find a line with slope of .
Note that the slope of the line in the last option is .
By normal curve symmetry
<span>from normal table </span>
<span>we have z = 1.15 , z = -1.15 </span>
<span>z = (x - mean) / sigma </span>
<span>1.15 = (x - 150) / 25 </span>
<span>x = 178.75 </span>
<span>z = (x - mean) / sigma </span>
<span>-1.15 = (x - 150) / 25 </span>
<span>x = 121.25 </span>
<span>interval is (121.25 , 178.75) </span>
<span>Pr((121.25-150)/25 < x < (178.75-150)/25) </span>
<span>is about 75%</span>