Answer:
£50
Step-by-step explanation:
£1 = $1.54
£x = $77
Cross multiply.
1.54x = 77
x = 77/1.54
x = 50
You would get £50 for $77.
complette the square to get vertex form or y=a(x-h)^2+k
(h,k) is vertex
1. group x terms, so for y=ax^2+bx+c, do y=(ax^2+bx)+c
<span>
<span>
</span>
2, factor out the leading coefinet (constant in front of the x^2 term), basicallly factor out a
</span><span>
<span>
</span>
3. take 1/2 of the linear coefient (number in
front of the x), and square it ,then add negative and positive of it
inside parnthases
</span><span>
<span>
</span>
4. complete the squre and expand
</span>
so
y=-1/4x^2+4x-19
group
y=(-1/4x^2+4x)-19
undistribute -1/4
y=-1/4(x^2-16x)-19
take 1/2 of -16 and squer it to get 64 then add neg and pos inside
y=-1/4(x^2-16x+64-64)-19
factorperfect square
y=-1/4((x-8)^2-64)-19
expand
y=-1/4(x-8)^2+16-19
y=-1/4(x-8)^2-3
vertex is (8,-3)
Conjugate of 9-5i is 9+5i
product of those two: (9-5i)*(9+5i) =
Answer with Step-by-step explanation:
We are given S be any set which is countable and nonempty.
We have to prove that their exist a surjection g:N
Surjection: It is also called onto function .When cardinality of domain set is greater than or equal to cardinality of range set then the function is onto
Cardinality of natural numbers set =( Aleph naught)
There are two cases
1.S is finite nonempty set
2.S is countably infinite set
1.When S is finite set and nonempty set
Then cardinality of set S is any constant number which is less than the cardinality of set of natura number
Therefore, their exist a surjection from N to S.
2.When S is countably infinite set and cardinality with aleph naught
Then cardinality of set S is equal to cardinality of set of natural .Therefore, their exist a surjection from N to S.
Hence, proved