A(x - x₁)(x - x₂) = 0
a=5, x₁=-3, x₂ = 3
so:
5(x-(-3))(x-3)=0
5(x+3)(x-3)=0
5(x²-9) = 0
5x² - 45 = 0 ← answer
Answer:
fist bubble i am pretty sure
Step-by-step explanation:
The simulation of the medicine and the bowler hat are illustrations of probability
- The probability that the medicine is effective on at least two is 0.767
- The probability that the medicine is effective on none is 0
- The probability that the bowler hits a headpin 4 out of 5 times is 0.3281
<h3>The probability that the medicine is effective on at least two</h3>
From the question,
- Numbers 1 to 7 represents the medicine being effective
- 0, 8 and 9 represents the medicine not being effective
From the simulation, 23 of the 30 randomly generated numbers show that the medicine is effective on at least two
So, the probability is:
p = 23/30
p = 0.767
Hence, the probability that the medicine is effective on at least two is 0.767
<h3>The probability that the medicine is effective on none</h3>
From the simulation, 0 of the 30 randomly generated numbers show that the medicine is effective on none
So, the probability is:
p = 0/30
p = 0
Hence, the probability that the medicine is effective on none is 0
<h3>The probability a bowler hits a headpin</h3>
The probability of hitting a headpin is:
p = 90%
The probability a bowler hits a headpin 4 out of 5 times is:
P(x) = nCx * p^x * (1 - p)^(n - x)
So, we have:
P(4) = 5C4 * (90%)^4 * (1 - 90%)^1
P(4) = 0.3281
Hence, the probability that the bowler hits a headpin 4 out of 5 times is 0.3281
Read more about probabilities at:
brainly.com/question/25870256
Answer:
A 500.00 look there's a pattern
Hello,
A=7
Indeed
A(x²-2x)=-6
7x²-14x=-6
==>A=7 and -14=-2A==>A=7