Answer:
a) Area of the base of the pyramid = ![15.6\ mm^{2}](https://tex.z-dn.net/?f=15.6%5C%20mm%5E%7B2%7D)
b) Area of one lateral face = ![24\ mm^{2}](https://tex.z-dn.net/?f=24%5C%20mm%5E%7B2%7D)
c) Lateral Surface Area = ![72\ mm^{2}](https://tex.z-dn.net/?f=72%5C%20mm%5E%7B2%7D)
d) Total Surface Area = ![87.6\ mm^{2}](https://tex.z-dn.net/?f=87.6%5C%20mm%5E%7B2%7D)
Step-by-step explanation:
We are given the following dimensions of the triangular pyramid:
Side of triangular base = 6mm
Height of triangular base = 5.2mm
Base of lateral face (triangular) = 6mm
Height of lateral face (triangular) = 8mm
a) To find Area of base of pyramid:
We know that it is a triangular pyramid and the base is a equilateral triangle.
![\text{Area of triangle = } \dfrac{1}{2} \times \text{Base} \times \text{Height} ..... (1)\\](https://tex.z-dn.net/?f=%5Ctext%7BArea%20of%20triangle%20%3D%20%7D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Ctext%7BBase%7D%20%5Ctimes%20%5Ctext%7BHeight%7D%20.....%20%281%29%5C%5C)
![{\Rightarrow \text{Area of pyramid's base = }\dfrac{1}{2} \times 6 \times 5.2\\\Rightarrow 15.6\ mm^{2}](https://tex.z-dn.net/?f=%7B%5CRightarrow%20%5Ctext%7BArea%20of%20pyramid%27s%20base%20%3D%20%7D%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%206%20%5Ctimes%205.2%5C%5C%5CRightarrow%2015.6%5C%20mm%5E%7B2%7D)
b) To find area of one lateral surface:
Base = 6mm
Height = 8mm
Using equation (1) to find the area:
![\Rightarrow \dfrac{1}{2} \times 8 \times 6\\\Rightarrow 24\ mm^{2}](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%208%20%5Ctimes%206%5C%5C%5CRightarrow%2024%5C%20mm%5E%7B2%7D)
c) To find the lateral surface area:
We know that there are 3 lateral surfaces with equal height and equal base.
Hence, their areas will also be same. So,
![\text{Lateral Surface Area = }3 \times \text{ Area of one lateral surface}\\\Rightarrow 3 \times 24 = 72 mm^{2}](https://tex.z-dn.net/?f=%5Ctext%7BLateral%20Surface%20Area%20%3D%20%7D3%20%5Ctimes%20%5Ctext%7B%20Area%20of%20one%20lateral%20surface%7D%5C%5C%5CRightarrow%203%20%5Ctimes%2024%20%3D%2072%20mm%5E%7B2%7D)
d) To find total surface area:
Total Surface area of the given triangular pyramid will be equal to <em>Lateral Surface Area + Area of base</em>
![\Rightarrow 72 + 15.6 \\\Rightarrow 87.6\ mm^{2}](https://tex.z-dn.net/?f=%5CRightarrow%2072%20%2B%2015.6%20%5C%5C%5CRightarrow%2087.6%5C%20%20mm%5E%7B2%7D)
Hence,
a) Area of the base of the pyramid = ![15.6\ mm^{2}](https://tex.z-dn.net/?f=15.6%5C%20mm%5E%7B2%7D)
b) Area of one lateral face = ![24\ mm^{2}](https://tex.z-dn.net/?f=24%5C%20mm%5E%7B2%7D)
c) Lateral Surface Area = ![72\ mm^{2}](https://tex.z-dn.net/?f=72%5C%20mm%5E%7B2%7D)
d) Total Surface Area = ![87.6\ mm^{2}](https://tex.z-dn.net/?f=87.6%5C%20mm%5E%7B2%7D)