Arithmetic sequences have a common difference between consecutive terms.
Geometric sequences have a common ratio between consecutive terms.
Let's compute the differences and ratios between consecutive terms:
Differences:

Ratios:

So, as you can see, the differences between consecutive terms are constant, whereas ratios vary.
So, this is an arithmetic sequence.
Answer:
Step-by-step explanation:
Well you can make the put the x with 90x and that will make 91x. Then you can add 91x with 26. 91x+26= 13(7x + 2). Hope that helped
Answer:
After 460 calls plan 1 is more economical than plan 2
Step-by-step explanation:
Plan 1: 36x + 0y
Plan 2: 13x + 0.05y
36x < 13x + 0.05y
36x - 13x < 0.05y
23x < 0.05y
23/0.05x < y
460x < y
Answer:
Las longitudes solicitadas en yardas son:
- <u>Trayecto A = 109.361 yardas.</u>
- <u>Trayecto B = 20.231785 yardas.</u>
Step-by-step explanation:
Para hacer la conversión de unidades que requieres en el ejercicio, debes saber que:
Con ese factor de conversión tú puedes hacer reglas de tres para calcular las medidas que requieres. En el caso del trayecto A:
Si:
- 1 metro = 1.09361 yardas
- 100 metros = X
Entonces:
Cancelamos metros y obtenemos:
- x = 100 * 1.09361 yardas
- <u>x = 109.361 yardas</u>
En este caso, <u>el trayecto A en yardas corresponde a 109.361 yardas</u>. El mismo procedimiento puede aplicarse para el trayecto B:
Si:
- 1 metro = 1.09361 yardas
- 18.50 metros = X
Entonces:
Cuando se cancelan los metros se obtiene:
- x = 18.50 * 1.09361 yardas
- <u>x = 20.231785 yardas</u>
Así, <u>el trayecto B en yardas corresponde a 20.231785 yardas</u>.
How do people......I just don't understand this