The answer is III only, or D.
We can start to solve this by knowing what the HL theorem means. The HL theorem, like its name implies, shows says that if a hypotenuse and leg of a triangle are congruent to the hypotenuse and leg of a different triangle, then the triangles are congruent. The only triangle that we see a hypotenuse congruent in is in figure III. In figure II, those congruent sides are both legs while in figure I we just see 2 congruent angles. Now in figure III, we can also see that two legs are congruent because of the reflexive property. That means that the answer is III, or D.
The points on the graph of the inverse variation are of the form:
(x, 8/x)
<h3>
Which ordered pairs are on the graph of the function?</h3>
An inverse variation function is written as:
y = k/x.
Here we know that k = 8.
y = 8/x
Then the points (x, y) on the graph of the function are of the form:
(x, 8/x).
So evaluating in different values of x, we can get different points on the graph:
- if x = 1, the point is (1, 8)
- if x = 2, the point is (2, 4)
- if x = 3, the point is (3, 8/3)
- if x = 4, the point is (4, 2)
And so on.
If you want to learn more about inverse variations:
brainly.com/question/6499629
#SPJ1
Answer:
27
Step-by-step explanation:
The answer is 27, because 9 x 3 = 27 and the smallest number that is the same is 27.
Hope this helps!
Answer:
C
Step-by-step explanation:
A rhombus always has 4 sides, making it a quadrilateral.
Feel free to ask further questions..
<span>Let r(x,y) = (x, y, 9 - x^2 - y^2)
So, dr/dx x dr/dy = (2x, 2y, 1)
So, integral(S) F * dS
= integral(x in [0,1], y in [0,1]) (xy, y(9 - x^2 - y^2), x(9 - x^2 - y^2)) * (2x, 2y, 1) dy dx
= integral(x in [0,1], y in [0,1]) (2x^2y + 18y^2 - 2x^2y^2 - 2y^4 + 9x - x^3 - xy^2) dy dx
= integral(x in [0,1]) (x^2 + 6 - 2x^2/3 - 2/5 + 9x - x^3 - x/3) dx
= integral(x in [0,1]) (28/5 + x^2/3 + 26x/3 - x^3) dx
= 28/5 + 40/9 - 1/4
= 1763/180 </span>