Answer:
false
Step-by-step explanation:
Answer:
272 cm²
Step-by-step explanation:
Step 1
We have to find the scale factor
When given the volume of two solids, the formula for the scale factor is
V1/V2 = (Scale factor)³
The volume of Pyramid A is 704 cm³ and the volume of Pyramid B is 297 cm³
V1 = Pyramid A
V2 = Pyramid B
704/297 = (scale factor)³
We simplify the left hand side to simplest fraction
The greatest common factor of 704 and 297 = 11
704÷11/297÷11 = (scale factor)³
64/27 = (scale factor)³
We cube root both sides
cube root(scale factor)³ = cube root (64/27)
scale factor = (4/3)
Step 2
(Scale factor)² = S1/S2
S1 = Surface area of Pyramid A =?
S2 = Surface area of Pyramid B = 153 cm²
Hence,
(4/3)² = S1/153
16/9 = S1/153
Cross Multiply
S1 × 9 = 16 × 153
S1 = 16 × 153/9
S1 = 272 cm²
Therefore, the Surface Area of Pyramid A = 272 cm²
You will draw the line from one corner to the other side. Like the picture I uploaded.
Answer:
n = 15
Step-by-step explanation:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation: 3*(n-6)-(27)=0
Pull out like factors : 3n - 45 = 3 • (n - 15)
Then: 3 • (n - 15) = 0
It's pretty easy from there, good luck!