Answer:I can help you round 206834 and 194268 to its nearest thousands place. 207000 would be the estimate for the first number and 194000 would be the estimate for the second number.
6-(-5)
6+5 = 11
The answer is D!
Answer:
63.6mm
Step-by-step explanation:
According to cosine rule;
AB² = BC²+AC²-2(BC)(AC)cos m<C
Substitute the given values
AB² = 70²+40²-2(70)(40)cos 64
AB² = 4900+1600-5600cos64
AB² = 6500-5600(0.4384)
AB² = 6500-2,454.87
AB² = 4,045.12
AB = √4,045.12
AB = 63.6mm
Hence the length of AB is 63.6mm
Answer: Downhill:10mph Uphill:5mph
Step-by-step explanation:
We are looking for Dennis’s downhill speed.
Let
r=
Dennis’s downhill speed.
His uphill speed is
5
miles per hour slower.
Let
r−5=
Dennis’s uphill speed.
Enter the rates into the chart. The distance is the same in both directions,
20
miles.
Since
D=rt
, we solve for
t
and get
t=
D
r
.
We divide the distance by the rate in each row and place the expression in the time column.
Rate
×
Time
=
Distance
Downhill
r
20
r
20
Uphill
r−5
20
r−5
20
Write a word sentence about the time.
The total time traveled was
6
hours.
Translate the sentence to get the equation.
20
r
+
20
r−5
=6
Solve.
20(r−5)+20(r)
40r−100
0
0
0
=
=
=
=
=
6(r)(r−5)
6
r
2
−30r
6
r
2
−70r+100
2(3
r
2
−35r+50)
2(3r−5)(r−10)
Use the Zero Product Property.
(r−10)=0
r=10
(3r−5)=0
r=
5
3
The solution
5
3
is unreasonable because
5
3
−5=−
10
3
and his uphill speed cannot be negative. So, Dennis's downhill speed is
10
mph and his uphill speed is
10−5=5
mph.
Check. Is
10
mph a reasonable speed for biking downhill? Yes.
Downhill:
10 mph
5 mph⋅
20 miles
5 mph
=20 miles
Uphill:
10−5=5 mph
(10−5) mph⋅
20 miles
10−5 mph
=20 miles
The total time traveled was
6
hours.
Dennis’ downhill speed was
10
mph and his uphill speed was
5
mph.