Answer:
It will take the boulder approximately 4.28 seconds to hit the road
Step-by-step explanation:
The given height of the cliff from which the boulder falls, h = 90 feet
The equation that can be used to find the time it takes the boulder to fall is h = u·t + (1/2)·g·t²
Where;
h = The height of the cliff = 90 ft.
u = The initial velocity of the boulder = 0 m/s (The boulder is assumed to be at rest when it falls)
g - The acceleration due to gravity ≈ 9.81 m/s²
t = How long it will take for the boulder to hit the road below
Plugging in the values gives;
90 = 0 × t + (1/2)×9.81×t² = 4.905·t²
∴ t = √(90/4.905) ≈ 4.28
The time it takes the boulder to hit the road, t ≈ 4.28 seconds.
Answer:
i dont know im sorry but i will still try
-3 + (-6) = -9
This relates to to the problem because the team has lost a total of nine yards.
Let "a" and "b" represent the values of the first and second purchases, respectively.
0.40*(original price of "a") = $10
(original price of "a") = $10/0.40 = $25.00 . . . . divide by 0.40 and evaluate
a = (original price of "a") - $10 . . . . . . Julia paid the price after the discount
a = $25.00 -10.00 = $15.00
At the other store,
$29 = 0.58b
$29/0.58 = b = $50 . . . . . . . divide by the coefficient of b and evaluate
Then Julia's total spending is
a + b = $15.00 +50.00 = $65.00
Julia spent $65 in all at the two stores.
Answer:
16.01%
Step-by-step explanation:
45-28.99 is 16.01, so it's 16.01%.