Step-by-step explanation:
Divide two on both sides to get rid of it and the make the equation in the form y = mx + c

y = 3/2x + 5
since both lines are parallel they must have the same gradient which is 3/2
y = 3/2x + c
All you have to do now is to replace x and y with (2, -5) to find c
x = 2
y = -5
-5 = 3/2 × 2 + c
-5 = 3 + c
c = -5-3
c = -8

Perhaps the easiest way to find the midpoint between two given points is to average their coordinates: add them up and divide by 2.
A) The midpoint C' of AB is
.. (A +B)/2 = ((0, 0) +(m, n))/2 = ((0 +m)/2, (0 +n)/2) = (m/2, n/2) = C'
The midpoint B' is
.. (A +C)/2 = ((0, 0) +(p, 0))/2 = (p/2, 0) = B'
The midpoint A' is
.. (B +C)/2 = ((m, n) +(p, 0))/2 = ((m+p)/2, n/2) = A'
B) The slope of the line between (x1, y1) and (x2, y2) is given by
.. slope = (y2 -y1)/(x2 -x1)
Using the values for A and A', we have
.. slope = (n/2 -0)/((m+p)/2 -0) = n/(m+p)
C) We know the line goes through A = (0, 0), so we can write the point-slope form of the equation for AA' as
.. y -0 = (n/(m+p))*(x -0)
.. y = n*x/(m+p)
D) To show the point lies on the line, we can substitute its coordinates for x and y and see if we get something that looks true.
.. (x, y) = ((m+p)/3, n/3)
Putting these into our equation, we have
.. n/3 = n*((m+p)/3)/(m+p)
The expression on the right has factors of (m+p) that cancel*, so we end up with
.. n/3 = n/3 . . . . . . . true for any n
_____
* The only constraint is that (m+p) ≠ 0. Since m and p are both in the first quadrant, their sum must be non-zero and this constraint is satisfied.
The purpose of the exercise is to show that all three medians of a triangle intersect in a single point.
Answer:
sorry dont know
Step-by-step explanation:
ΔAOB is a right angled triangle. Therefore the Pythagorean Theorem applies in this situation.
θ is the angle from a standard position of the line OA
The length of the y component is √(1-0)2 +(-3-(-3))2] =√(12+ 02) = 1 A(-3,1) to B(-3,0) which is opposite
Then the length of the x-component is √[(-3-0)2 +(0-0)2] = √(9+0)= 3 B(-3,0) to O(0,0) which is adjacent
The length of vector OA is √[(-3-0)2 + (1-0)2] = √(9+1) = √(10) A(-3,1) to O(0,0) which is the hypotenuse of the triangle
θ = 180 - α
sinθ = sin(180-α) = opposite/hypotenuse = 1/√10
cosθ = adjacent/hypotenuse = -3/√10
tanθ = opposite/adjacent = 1/-3 = -1/3
α= arcsin(1/√10) ≈ 18
θ =180 -18 ≈162
Answer:
- Decreasing
Step-by-step explanation:
im not sure of the last two but the others are for sure a no