<u>Given</u>:
Given that the graph of the quadratic function.
We need to determine the value of a in the function's equation.
<u>Value of a:</u>
The value of a can be determined using the formula,

where (h,k) is the vertex and a is a constant.
From the graph, it is obvious, that the vertex of the parabola is (0,9).
Thus, substituting the vertex (h,k) = (0,9) in the above formula, we get;

-------- (1)
Let us substitute any one of the coordinate that the graph passes through to determine the value of a.
Let us substitute the point (3,0) in the equation (1), we have;




Thus, the value of a is -1.
Hence, Option B is the correct answer.
Answer:
2.5 kilograms
Step-by-step explanation:
10 rings times each weight ring(250)=2500
2500 grams to kilograms is 2.5
Given :
The foci of hyperbola are (8,0) and (-8,0) .
The difference of the focal radii = 6.
To Find :
The equation of the hyperbola.
Solution :
We know, distance between foci is given by :
2c = 8 - (-8)
c = 8
Also, difference between the foci or focal distance is given by :
2a = 6
a = 3
Now, we know for hyperbola :

General equation of hyperbola is :

Hence, this is the required solution.
Here you go. I hope this will help
Answer:
670
Step-by-step explanation:
2003-814=1189
1189-519=670