1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
9

Simplify each algebraic expression by combing like terms 7x^2-5x+10x-8x^2

Mathematics
2 answers:
castortr0y [4]3 years ago
8 0

Answer: -x^2 + 15x

Step-by-step explanation:

dangina [55]3 years ago
5 0
You just add the 7x^2 with the -8x^2 which gives you -x^2. Then you add the 10x with the -5x and get 5x.
You might be interested in
Please answer correctly !!!! Will mark brainliest !!!!!!!!
nevsk [136]

Answer:

A

Step-by-step explanation:

Notice how it points it out for the x coordinate, and the closed circle means that point is included, So it's the range of the smallest x coordinate to the greatest x coordinate.

4 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Find the slope of the line passing through the points (-7 ,-7) and (-3,6)
ycow [4]

Answer:

14/4 or 7/2

Step-by-step explanation:

6 - (-7)

---------

-3 - (-7)

When you subtract a - its really just adding

6 0
2 years ago
Alex wants to fence in an area for a dog park. He has plotted three sides of the fenced area at the points E (1, 5), F (3, 5), a
hram777 [196]

Answer:

(1,1)

Step-by-step explanation:

Given: E, F, G, H denote the three coordinates of the area fenced

To find: coordinates of point H

Solution:

According to distance formula,

length of side joining points (x_1,y_1)\,,\,(x_2,y_2) is equal to \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

So,

EF=\sqrt{(3-1)^2+(5-5)^2}=2\,\,units\\FG=\sqrt{(6-3)^2+(1-5)^2}=\sqrt{9+16}=5\,\,units\\GH=\sqrt{(x-6)^2+(y-1)^2}\\EH=\sqrt{(x-1)^2+(y-5)^2}

Perimeter of a figure is the length of its outline.

EF+FG+GH+EH=16\\2+5+\sqrt{(x-6)^2+(y-1)^2}+\sqrt{(x-1)^2+(y-5)^2}=16\\\sqrt{(x-6)^2+(y-1)^2}+\sqrt{(x-1)^2+(y-5)^2}=16-2-5\\\sqrt{(x-6)^2+(y-1)^2}+\sqrt{(x-1)^2+(y-5)^2}=9

Put (x,y)=(1,1)

\sqrt{(1-6)^2+(1-1)^2}+\sqrt{(1-1)^2+(1-5)^2}=9\\\sqrt{25}+\sqrt{16}=9\\5+4=9\\9=9

This is true.

So, the point (1,1) satisfies the equation \sqrt{(x-6)^2+(y-1)^2}+\sqrt{(x-1)^2+(y-5)^2}=9

So, point H is (1,1).

7 0
3 years ago
You have 2 2/3 cups of dried fruit to share evenly among five children. How many cups of fruit will each child receive.
Mice21 [21]
2 2/3 = [(2*3)+2]/3 =8/3
(8/3)/5=8/(3*5)=8/15
4 0
3 years ago
Other questions:
  • Sam is packing food boxes for the food bank. For each apple, he packs 3 plums. What is the ratio that represents the amount of p
    5·1 answer
  • In the figure below, angle ABD measure 41°. what is the measure of angle ABC?
    15·1 answer
  • Consider writing onto a computer disk and then sending it through a certifier that counts the number of missing pulses. Suppose
    11·1 answer
  • True or False. View the image below.
    13·1 answer
  • Lorenzo purchased 12 cookies. He gave of the cookies to Celine and gave of the remaining cookies to Petra.
    12·1 answer
  • Its 9:50 what time will it be 1 hour and 30 minutes from now
    7·1 answer
  • Find x in this 45°-45°-90° triangle.<br> x=
    12·1 answer
  • What is the theoretical probability of rolling a 3 or a 4 on a fair six sided die?
    14·1 answer
  • How is the place value pattern for decimal amount similar to the place value pattern for whole numbers?
    5·1 answer
  • State the equation of the line described.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!