Answer:
Reflected over the x-axis and rotated 90° counterclockwise
Step-by-step explanation:
R=S*0.5^(t/8)
<span>R is the remaining amount </span>
<span>S is the starting amount (500) </span>
<span>0.5^ is for the HALF in half-life </span>
<span>t/8 show that every 8 ts (every 8 hours), it will be halved once </span>
<span>...so plug in 500mg for the general solution... </span>
<span>R=(500)*(0.5)^(t/8) </span>
<span>... plug in 24h to solve for after 24h </span>
<span>R=(500)*(0.5)^(24/8) </span>
<span>R=(500)*(0.5)^(3) </span>
<span>R=(500)*(0.125) </span>
<span>R=(0.0625) </span>
<span>...therefore there with be 0.0625 mg of the dose remaining</span>
Answer:
![-16.2](https://tex.z-dn.net/?f=-16.2)
Step-by-step explanation:
![-9.2+(-7)=-16.2](https://tex.z-dn.net/?f=-9.2%2B%28-7%29%3D-16.2)
![\huge \bf༆ Answer ༄](https://tex.z-dn.net/?f=%5Chuge%20%5Cbf%E0%BC%86%20Answer%20%E0%BC%84)
The equivalent expressions are ~
<h3>Question : 1 </h3>
<h3>Question : 2</h3>
<h3>Question : 3 </h3>
Answer:
The formula ![y = \frac{x^{2} }{2z} + \frac{W}{2z}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B2z%7D%20%2B%20%5Cfrac%7BW%7D%7B2z%7D)
Step-by-step explanation:
<em><u>Explanation</u></em>
Given W = x² - 2 y z
2 y z = x² + W
Dividing '2z' on both sides , we get
![\frac{2yz}{2z} = \frac{x^{2} + W}{2z}](https://tex.z-dn.net/?f=%5Cfrac%7B2yz%7D%7B2z%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%2B%20W%7D%7B2z%7D)
⇒ ![y = \frac{x^{2} }{2z} + \frac{W}{2z}](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B2z%7D%20%2B%20%5Cfrac%7BW%7D%7B2z%7D)