Answer:
○ A. No, x = -6 is not a zero of the polynomial.
The quotient is x - 29, and the remainder is 234.
Step-by-step explanation:
[x - 3][x - 20] >> Factored Form
Obviously, this is not a zero. Now, to get the remainder, we have to plug in the vertical line of <em>x = -6</em> into its conjugate, meaning an expression with opposite signs, which is <em>x + 6</em>. This is the expression we divide the dividend by, so you will have this:
\frac{{x}^{2} - 23x - 60}{x + 6}
Since the divisor is in the form of <em>x - c</em>, using Synthetic Division, we get this:
x - 29 + \frac{234}{x + 6}
You see? You have <em>x - 29</em> in the quotient, and you have 234 as the numerator remainder.
I am joyous to assist you anytime.
Hello! :)
3/5 ÷ -4/9
= -27/30
-1 7/20 Simplified
-1 7/20 is your answer.
Hope this answer helped you!
THEDIPER
Answer:
The reduced row-echelon form of the linear system is ![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
We will solve the original system of linear equations by performing a sequence of the following elementary row operations on the augmented matrix:
- Interchange two rows
- Multiply one row by a nonzero number
- Add a multiple of one row to a different row
To find the reduced row-echelon form of this augmented matrix
![\left[\begin{array}{cccc}2&3&-1&14\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D2%263%26-1%2614%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
You need to follow these steps:
- Divide row 1 by 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\1&2&1&4\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C1%262%261%264%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 from row 2

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\5&9&2&7\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C5%269%262%267%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 1 multiplied by 5 from row 3

![\left[\begin{array}{cccc}1&3/2&-1/2&7\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%263%2F2%26-1%2F2%267%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 1

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&3/9&9/2&-28\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%263%2F9%269%2F2%26-28%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 2 multiplied by 3 from row 3

![\left[\begin{array}{cccc}1&0&-5&16\\0&1/2&3/2&-3\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%261%2F2%263%2F2%26-3%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Multiply row 2 by 2

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&-19\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%26-19%5Cend%7Barray%7D%5Cright%5D)
- Divide row 3 by −19

![\left[\begin{array}{cccc}1&0&-5&16\\0&2&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%2616%5C%5C0%262%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Subtract row 3 multiplied by 16 from row 1

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&-6\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%26-6%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
- Add row 3 multiplied by 6 to row 2

![\left[\begin{array}{cccc}1&0&-5&0\\0&1&3&0\\0&0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26-5%260%5C%5C0%261%263%260%5C%5C0%260%260%261%5Cend%7Barray%7D%5Cright%5D)
We are asked to identify an another way to solve the given problem or this summation 104 + 34 + 228 + 887. We can verify it by doing of performing the summation in a reverse sequence such 877 comes first, then followed by 228, then followed by 34 and lastly added by 104. Therefore, the answer is 877 + 228 + 34 + 104.This is an another way to solve the given problem.