Answer:
Se obtuvo $ 448 de ganancia por la venta de donas.
Se obtuvo $ 280 de ganancia por la venta de bolillos.
Step-by-step explanation:
1) <em>¿Cuanta ganancia se obtuvo en la venta de donas?</em>
La ganancia es el producto del porcentaje producido de donas, expresado como razón, el precio unitario de la dona y el total producido de panes. Es decir:


Se obtuvo $ 448 de ganancia por la venta de donas.
2) <em>¿Cuanta ganancia se obtuvo en la venta de bolillos?</em>
La ganancia es el producto del porcentaje producido de bolillos, expresado como razón, el precio unitario del bolillo y el total producido de panes. Es decir:


Se obtuvo $ 280 de ganancia por la venta de bolillos.
Answer:
x = 24.0
y = 46.4
Step-by-step explanation:
Let opposite side = z
Using trigonometry :
Sin 30 = z / 34
z = 0.5 * 34
z = 17
We find x :
Sin 45 = 17 / x
x * sin45 = 17
x = 17 / sin 45
x = 24.04
Let y = y1 + y2
y1 = 17 / tan45
y1 = 17
y2 = 17/tan30
y2 = 29.44
y = 17 + 29.44
y = 46.44
1/2 * n = 2n + 14
Multiply everything by 2 to get rid of the fraction
n = 4n + 28
n - 4n = 28
-3n = 28
n = -9.333333
n = -28/3
Answer:
Step-by-step explanation:
I have no idea what formula that is you're using but the one I teach in both algebra 2 and in precalculus for continuous compounding is

where A(t) is the amount after the compounding, P is the initial investment, ee is Euler's number, r is the interest rate in decimal form, and t is the time in years. If our money doubles, we just have to come up with a number which will be P and then double it to get A(t). It doesn't matter what number we pick to double, the answer will come out the same regardless. I started with 2 and then doubled it to 4 and filled in the rest of the info given with time as my unknown:

Begin by dividing both sides by 2 to get

The only way we can get that t out of its current position is to take the natural log of both sides. Natural logs have a base of e, so
This is because they are inverses of one another. Taking the natural log of both sides:
Now divide by .062 to get
t = 11.2 years
Answer:
Factor completely:
3x^2 + 9x-3
a) 3(x^2+3)
<u>b) 3(x^2+3x-1)
</u>
c) 3x(x^2+3x-1)
d) prime
Step-by-step explanation:
Take out the common factor 3