The length of the KN is 4.4
Step-by-step explanation:
We know from Pythagoras theorem
In a right angle ΔLMN
Base² + perpendicular² = hypotenuse
²
From the properties of triangle we also know that altitudes are ⊥ on the sides they fall.
Hence ∠LKM = ∠NKM = 90
°
Given values-
LM=12
LK=10
Let KN be “s”
⇒LN= LK + KN
⇒LN= 10+x eq 1
Coming to the Δ LKM
⇒LK²+MK²= LM²
⇒MK²= 12²-10²
⇒MK²= 44 eq 2
Now in Δ MKN
⇒MK²+ KN²= MN²
⇒44+s²= MN² eq 3
In Δ LMN
⇒LM²+MN²= LN²
Using the values of MN² and LN² from the previous equations
⇒12² + 44+s²= (10+s)
²
⇒144+44+s²= 100+s²+20s
⇒188+s²= 100+s²+20s cancelling the common term “s²”
⇒20s= 188-100
∴ s= 4.4
Hence the value of KN is 4.4
Answer:
<em>Choice: B.</em>
Step-by-step explanation:
<u>Operations With Functions</u>
Given the functions:
![f(x)=\sqrt[3]{12x+1}+4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7B12x%2B1%7D%2B4)

The function (g-f)(x) can be obtained by replacing both functions and subtracting them as follows:

![(g-f)(x)= \log(x-3)+6 - (\sqrt[3]{12x+1}+4)](https://tex.z-dn.net/?f=%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%2B6%20-%20%28%5Csqrt%5B3%5D%7B12x%2B1%7D%2B4%29)
Operating:
![(g-f)(x)= \log(x-3)+6 - \sqrt[3]{12x+1}-4](https://tex.z-dn.net/?f=%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%2B6%20-%20%5Csqrt%5B3%5D%7B12x%2B1%7D-4)
Joining like terms:
![\boxed{(g-f)(x)= \log(x-3) - \sqrt[3]{12x+1}+2}](https://tex.z-dn.net/?f=%5Cboxed%7B%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%20-%20%5Csqrt%5B3%5D%7B12x%2B1%7D%2B2%7D)
Choice: B.
1) a = 2, b= 3, c=2,
2) x^2 -2x-4 (a = 1, b=-2, c =-4)
3) x^2+x+3 (a,b = 1, c = 3)
4) 7x^2+8x-4 (a=7, b=8, c=-4)