All the numbers are multiplied by 2 or doubled.
So the missing number after 2 is 4.
After 16 is 32.
Answer:
(a)![E[X+Y]=E[X]+E[Y]](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D)
(b)
Step-by-step explanation:
Let X and Y be discrete random variables and E(X) and Var(X) are the Expected Values and Variance of X respectively.
(a)We want to show that E[X + Y ] = E[X] + E[Y ].
When we have two random variables instead of one, we consider their joint distribution function.
For a function f(X,Y) of discrete variables X and Y, we can define
![E[f(X,Y)]=\sum_{x,y}f(x,y)\cdot P(X=x, Y=y).](https://tex.z-dn.net/?f=E%5Bf%28X%2CY%29%5D%3D%5Csum_%7Bx%2Cy%7Df%28x%2Cy%29%5Ccdot%20P%28X%3Dx%2C%20Y%3Dy%29.)
Since f(X,Y)=X+Y
![E[X+Y]=\sum_{x,y}(x+y)P(X=x,Y=y)\\=\sum_{x,y}xP(X=x,Y=y)+\sum_{x,y}yP(X=x,Y=y).](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3D%5Csum_%7Bx%2Cy%7D%28x%2By%29P%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%2B%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29.)
Let us look at the first of these sums.
![\sum_{x,y}xP(X=x,Y=y)\\=\sum_{x}x\sum_{y}P(X=x,Y=y)\\\text{Taking Marginal distribution of x}\\=\sum_{x}xP(X=x)=E[X].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DxP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7Bx%7Dx%5Csum_%7By%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20x%7D%5C%5C%3D%5Csum_%7Bx%7DxP%28X%3Dx%29%3DE%5BX%5D.)
Similarly,
![\sum_{x,y}yP(X=x,Y=y)\\=\sum_{y}y\sum_{x}P(X=x,Y=y)\\\text{Taking Marginal distribution of y}\\=\sum_{y}yP(Y=y)=E[Y].](https://tex.z-dn.net/?f=%5Csum_%7Bx%2Cy%7DyP%28X%3Dx%2CY%3Dy%29%5C%5C%3D%5Csum_%7By%7Dy%5Csum_%7Bx%7DP%28X%3Dx%2CY%3Dy%29%5C%5C%5Ctext%7BTaking%20Marginal%20distribution%20of%20y%7D%5C%5C%3D%5Csum_%7By%7DyP%28Y%3Dy%29%3DE%5BY%5D.)
Combining these two gives the formula:

Therefore:
![E[X+Y]=E[X]+E[Y] \text{ as required.}](https://tex.z-dn.net/?f=E%5BX%2BY%5D%3DE%5BX%5D%2BE%5BY%5D%20%5Ctext%7B%20%20as%20required.%7D)
(b)We want to show that if X and Y are independent random variables, then:

By definition of Variance, we have that:
![Var(X+Y)=E(X+Y-E[X+Y]^2)](https://tex.z-dn.net/?f=Var%28X%2BY%29%3DE%28X%2BY-E%5BX%2BY%5D%5E2%29)
![=E[(X-\mu_X +Y- \mu_Y)^2]\\=E[(X-\mu_X)^2 +(Y- \mu_Y)^2+2(X-\mu_X)(Y- \mu_Y)]\\$Since we have shown that expectation is linear$\\=E(X-\mu_X)^2 +E(Y- \mu_Y)^2+2E(X-\mu_X)(Y- \mu_Y)]\\=E[(X-E(X)]^2 +E[Y- E(Y)]^2+2Cov (X,Y)](https://tex.z-dn.net/?f=%3DE%5B%28X-%5Cmu_X%20%20%2BY-%20%5Cmu_Y%29%5E2%5D%5C%5C%3DE%5B%28X-%5Cmu_X%29%5E2%20%20%2B%28Y-%20%5Cmu_Y%29%5E2%2B2%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%24Since%20we%20have%20shown%20that%20expectation%20is%20linear%24%5C%5C%3DE%28X-%5Cmu_X%29%5E2%20%20%2BE%28Y-%20%5Cmu_Y%29%5E2%2B2E%28X-%5Cmu_X%29%28Y-%20%5Cmu_Y%29%5D%5C%5C%3DE%5B%28X-E%28X%29%5D%5E2%20%20%2BE%5BY-%20E%28Y%29%5D%5E2%2B2Cov%20%28X%2CY%29)
Since X and Y are independent, Cov(X,Y)=0

Therefore as required:

A mountaineer climbed 1000 feet at a rate of x feet/hour
1000 = x ( t 1 ) eq1
5000 = X ( t 2) eq2 ( he climbed additional at different rate )
the rate was 10 feet / hour less than twice the first rate
X = 2x - 10 eq3
take eq1 and eq 2
( total time = t 1 + t 2 = T)
T = 1000/x + 5000/X
but X = 2x-10
T = 1000/x + 5000/( 2x -10)
T = 1000/x + 5000/( 2(x-5))
T = 1000/x + 2500 / (x-5)
You have 2 options.
I will show you the most efficient one, but later I will tell you the other.
-4x+6y=12
6y=4x+12
y=4/6x+12
y=2/3x+12
This tells us the point (0,12) as 12 is where it meets the y-axis (that is why you add it)
And then using the slope, 2/3 we can get (2,15) (which is up 3, right 2)
Just graph those, I would show you exactly, but I cannot add attachments sadly.
The other way (which I won’t show it all as the results would end out with the same line) is to fill in x, then y, with 0
So -4*0+6y=12 which means x=0 and you are solving for y and -4x+6*0=12 which means y=0 and you are solving for x