To find the product of (4x-5y)^2,
we can rewrite the problem as:
(4x-5y)(4x-5y) (two times because it is squared)
Now, time to use that old method we learned in middle school:
FOIL. (Firsts, Outers, Inners, and Lasts)
FOIL can help us greatly in this scenario.
Let's start by multiplying the 'Firsts' together:
4x * 4x = <em>16x^2</em>
Now, lets to the 'Outers':
4x * -5y = <em>-20xy</em>
Next, we can multiply the 'Inners':
-5y * 4x = <em>-20xy</em>
Finally, let's do the 'Lasts':
-5y * -5y = <em>25y</em>^2
Now, we can take the products of these equations from FOIL and combine like terms. We have: 16x^2, -20xy, -20xy, and 25y^2.
-20xy and -20xy make -40xy.
The final equation (product of (4x-5y)^2) is:
16x^2 - 40xy + 25y^2
Hope I helped! If any of my math is wrong, please report and let me know!
Have a good one.
This problem can be solved in two ways, the long way, or the short way.
1. The long way
We know that the base of the triangle is along the x-axis, and the length of the base is 20.
The centre of mass is located at 2/3 of the distance from vertex (3,4) along the median, which cuts the base at (10,0).
Therefore the centre of mass is located at
x=3+(10-3)*2/3=23/3
y=4/3
2. The short way
It turns out that the centre of mass of a triangle sheet is located at the mean of the coordinates of the three vertices, i.e.
CG=((0+20+3)/3, (0+0+4)/3)=(23/3, 4/3) as before.
Answer:
(0,0) and (5,0)
Step-by-step explanation:
i dont know your choices
Answer:
<u>-1</u>
2
Step-by-step explanation:
(0,2) and (1,0) are the points on the line
Let (0,2) be (x1,y1) and (1,0) be (x2,y2)
slope(m)= <u>y2-y1</u>
x2-x1
=<u>1-0</u>
0-2
=<u>1</u>
-2