About Slope - Intercept Form:
- y = mx + b
- m is the slope
- b is the y-intercept
About Standard Form:
- Ax + By = C
- A & B & C are integers
- A & B are both non-zero
- This form is good to use when wanting to find the x & y intercepts of a line
About Point - Slope Form:
- Y - Y1 = m (x -X1)
- Y1 & X1 is a point on the line
- The form allows you to identify the slope & the point on the line
Other Info:
- Remember, y comes before the x
- An ordered pair from your problem: (-3,1), -3 is x & 1 is y & x is before the y
- An ordered pair from your problem: (3,5), 3 is x & 5 is y & x is before the y
- For the graph, the vertical line is y
- For the graph, the horizontal line is x
Hope this information helps!!! :)
Quotient is the result of division. Assign a variable to the unknown number. Let's make it x. Write the statement as an equation.
x/5 - 10 = 3
solve for x
x/5 - 10 = 3
x/5 = 3 + 10
x/5 = 13
x = 5 × 13
x = 65
You can use the SSS, SAS, ASA, AAS congruency for any triangles and the HL congruency for just the right triangle
<h3><u>Solution</u></h3>
<u>Given </u><u>:</u><u>-</u>
- Perimeter of rectangle = 72 cm
- The length is 3 more than twice the width.
<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>:</u><u>-</u>
<h3 /><h3>
<u>Explantion</u></h3>
<u>Using </u><u>Formula</u>

<u>Let,</u>
- Length of Rectangle = x cm
- Breadth of Rectangle = y cm
<u>According</u><u> to</u><u> question</u><u>,</u>
==> perimeter of Rectangle = 72
==> 2(x+y) = 72
==> x + y = 72/2
==> x + y = 36_________________(1)
<u>Again,</u>
==> x = 2y + 3
==> x - 2y = 3__________________(2)
<u>Subtract</u><u> </u><u>equ(</u><u>1</u><u>)</u><u> </u><u>&</u><u> </u><u>equ(</u><u>2</u><u>)</u>
==> y + 2y = 36 - 3
==> 3y = 33
==> y = 33/3
==> y = 11
<u>keep </u><u>in </u><u>equ(</u><u>1</u><u>)</u>
==> x - 2×11 = 3
==> x = 3 + 22
==> x = 25
<h3><u>Hence</u></h3>
- <u>Length</u><u> of</u><u> </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u> </u><u>cm</u>
- <u>Width </u><u>of </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u> </u><u>cm</u>
<h3>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u></h3>
<h3 />