Step-by-step explanation:
By binomial theorem,
T(r+1) = nCr * a^(r+1) * b^r
Term 4 = 7C3 * (2x)^4 * (-5y)^3 = 35 * (16x^4) * (-125y^3) = -70000x^4y^3.
Answer:
1) 2x+7
2) -3x+11
3) 0.75x-2
4) -2x+0
5) -1.5x+2
6) -4x+16
Step-by-step explanation:
1) y = mx + c
m = 2 when x=1 , y=9
9 = 2(1)+c
c = 7
y = 2x + 7
2) m = -3
When x=4, y= -1
-1 = -3(4) + c
c = -1+12 = 11
y = -3x + 11
3) m = 0.75
When x= -4, y= -5
-5 = 0.75(-4) + c
-5 = -3 + c
c = -2
y = 0.75x - 2
4) m = (y2-y1)/(x2-x1)
m = (2-(-6))/(-1-3) = 8/-4 = -2
y = -2x + c
When x= -1, y= 2
2 = -2(-1) + c
2 = 2 + c
c = 0
y = -2x + 0
5) m = (-10-(-4))/(8-4)
m = (-10+4)/4 = -6/4 = -1.5
y = -1.5x + c
When x= 4, y= -4
-4 = -1.5(4) + c
-4 = -6 + c
c = 2
y = -1.5x + 2
6) m = (-4-4)/(5-3) = -8/2 = -4
When x= 3, y= 4
4 = -4(3) + c
4 = -12 + c
c = 16
y = -4x + 16
It will be 8 years old when it is worth $4800.
Answer:
The Answer is 76.
Step-by-step explanation:
Given the normal distribution " 10% of employees (rated) exemplary, 20% distinguished, 40% competent, 20% marginal, and 10% unacceptable'', we can see that exemplary employees are top 10% rated employees.
We have the formula for normal distribution:
z=(X-M)÷σ
where z is the <em>minimum z-score </em>for top 10% employee, X is the <em>minimum </em>score for top 10% employee, M is the <em>mean</em> of the score distribution, σ is the <em>standard deviation</em> of the score distribution.
The z-score we are looking for is the value "a" that separates the highest 10% from the lowest 90% i.e. P(z≤a)=0.90
If we look at z-table, corresponding value for a is 1.28155
We can now put the values in the formula:
1.28155=
So X=(1.28155×20)+50=75.631
Therefore minimum score for exemplary employee is 76.