A tangent forms a right angle with the centre of circle at the point it touches the circumference. i.e. OAB = 90 degrees
If AOB = 55 degrees, then ABO = 90 - 55 = 35 degrees
Answer:
<u>1st pic:</u>
x = 49
top angle = 45
bottom angle = 108
far right angle = 27 degrees
<u>2nd pic:</u>
angle 1 = 88 degrees
angle 2 = 57 degrees
angle 3 = 35 degrees
angle 4 = 145 degrees
Step-by-step explanation:
<u>1st pic:</u>
you can find the far right angle by taking 153 and subtracting it from 180:
⇒ 180 - 153 = 27 degrees
you can find x by the following equation ⇒ x - 4 + 2x + 10 + 27 = 180
combine like terms ⇒ 3x + 33 = 180
subtract 33 from each side ⇒ 3x + 33 - 33 = 180 - 33 ⇒ 3x = 147
divide 3 on each side: ⇒ 
x = 49
to find the top and bottom angles, substitute 49 for x:
top angle : x - 4
49 - 4 = 45 degrees
bottom angle: 2x + 10
2 x 49 + 10 = 108 degrees
<u>2nd pic:</u>
angle 1:
⇒ 180 - 92 = 88 degrees
angle 2:
⇒ 180 - 123 = 57 degrees
angle 3:
⇒ 180 - (88 + 57) = 35 degrees
angle 4:
⇒ 180 - 35 = 145 dgerees
I think, the answer will be -7
We have:
f(x)=1/(x-2)
g(x)
Then:
(fg)(x)=[1/(x-2)](g(x))=g(x)/(x-2)
Now; we calculate: (fg)`(x)
Remember: (u/v)=(u`v-vu´)/v²
Therefore:
(fg)´(x)=[g´(x)*(x-2) - 1*g(x)]/ (x-2)²
We know that:
g´(1)=-1
(fg)´(1)=6
Therefore:
6=[-1*(1-2)-g(1)]/(1-2)²
6=[1-g(1)]/1
6=1-g(1)
-g(1)=6-1
g(1)=-5
Answer: B. -5
Shadow length is proportional to object height.
(tower height)/(tower shadow length) = (tree height)/(tree shadow length)
(tower height)/(72 ft) = (27 ft)/(6 ft)
(tower height) = (72 ft)*(27/6)
(tower height) = 324 ft
The cellular telephone tower is 324 ft tall.