The frequency of RR is found by squaring the frequency of R. The answer is about .72 or 72 %
Answer:
A. Mutualism
Explanation:
<u>Mutualism</u> The bristle worm living with the hermit crab.
Answer:
a) k_m = 4.08 uM
V_{max} = 20.07 uM/min
b) k_m = 8.16 uM
Explanation:
Given that:
For Enzyme A:
the substrate concentration [S] = 40 uM
the initial velocity rate v = 10 uM/min
when it was 4mM, v = 20 uM/min
i.e.
at 4mM = 4000 uM;
Using Michealis -menten equation;
when v = 10
![V = \dfrac{V_{max}[S]}{k_m+[S]}](https://tex.z-dn.net/?f=V%20%3D%20%5Cdfrac%7BV_%7Bmax%7D%5BS%5D%7D%7Bk_m%2B%5BS%5D%7D)
∴



when v= 20



equating equation (1) and (2):


let multiply equation (1) by 100 and equation (2) by 1
4000V_{max} - 1000K_m = 4000
<u>4000V_{max} - 20 k_m = 8000 </u>
0 -980k_m = 4000
k_m = 4000/-980
k_m = 4.08 uM
replacing the value of k_m into equation (1)
40{V_max } - 10(4.08) = 400
40{V_max } - 40.8 = 400
40{V_max } = 400 + 40.8
40{V_max } = 440.8
V_{max} = 440.8/40
V_{max} = 11.02 uM/min
b)
Since V_{max} of A ie equivalent to that of B; then:
V_{max} of B = 11.02 uM/min
Here;
[S] = 80 uM
V = 10 uM/min
∴

10(k_m +80) = 881.6
10k_m = 881.6 - 800
10k_m = 81.6
k_m = 81.6/10
k_m = 8.16 uM
A cell spends most of its time in what is called interphase, and during this time it grows, replicates its chromosomes, and prepares for cell division. The cell then leaves interphase, undergoes mitosis, and completes its division