Answer:
4 ul Loading Buffer + 19.70 ul dH2O + 0.30 ul DNA Ladder
Load 12 ul on the gel.
Explanation:
DNA Ladder concentration = 1000 ug/ml
1000 ug DNA in 1 ml DNA Ladder solution → 150 ng DNA = 0.15 ug DNA in..... 0.00015 ml = 0.15 ul DNA Ladder solution
6x DNA Loading Buffer → it has to be diluted by an equal volume 6 times (1 ul LB + 1 ul distilled H2O)
An appropriate volume to load on an average agarose gel is 12 ul, so:
2 ul Loading Buffer + 9.85 ul dH2O + 0.15 ul DNA Ladder = 12 ul
But since 0.15 ul is a very small volume and mistakes could be made while measuring it, let's make double:
4 ul Loading Buffer + 19.70 ul dH2O + 0.30 ul DNA Ladder = 24 ul
And load half of that solution (12 ul) on the gel.
Answer:
b. Even though the DNA sequence changed, the sequence still codes for the same amino acid, so no change in phenotype will occur.
Explanation:
There is redundancy in the genetic code. That means that different codons can code for the same amino acids, so some mutations do not change the amino acid sequence of the protein.
Here, the amino acid is unchanged with the mutation.
If the amino acid sequence of the protein is the same, then the protein is not changed, so there will be no change in the phenotype
Answer:
Explanation:
LHON (Leber Hereditary Optic Neuropathy): Is a disease that is characterized by loss of vision in young adults.
Sickle cell anemia: Is a disease characterized by production of abnormally shaped red blood cells, that is, not round in shape as normal but are 'sickle' shaped or elongated/crescent shaped.
Both diseases are heritable But LHON is caused by mutations existing in the mitochondrion thus only inherited maternally.
Sickle cell anemia is caused by mutations in the HBB gene which produces the beta subunit of hemoglobin. It is inherited from recessive genes of both parents.