Answer:
and
are two such planes.
Step-by-step explanation:
To find the two planes whose intersection is the line

You can say that <em>t</em> is equal to this expression

Next,

Then,
and
are two such planes.
You can see in the image attached that the intersection of this planes is the line

Angle MON is a straight angle and OP -> bisects <MOQ
What is the measure of <MOP?
it would be 61 degrees
I hope this helps.
The slope-intercept form is
y=mx+b
, where m is the slope and b is the y-intercept.
y=mx+b
Find the values of
m
and
b
using the form
y
=
m
x
+
b
.
\m
=
2
b
=
−
3
The slope of the line is the value of
m
, and the y-intercept is the value of
b
.
Slope:
2
y-intercept:
(
0
,
−
3
)
Any line can be graphed using two points. Select two
x
values, and plug them into the equation to find the corresponding
y
values.
Tap for fewer steps...
Find the x-intercept.
Tap for more steps...
x-intercept(s):
(
3
2
,
0
)
Find the y-intercept.
Tap for more steps...
y-intercept(s):
(
0
,
−
3
)
Create a table of the
x
and
y
values.
x
y
0
−
3
3
2
0
m
=
2
b
=
−
3
The slope of the line is the value of
m
, and the y-intercept is the value of
b
.
Slope:
2
y-intercept:
(
0
,
−
3
)
Any line can be graphed using two points. Select two
x
values, and plug them into the equation to find the corresponding
y
values.
Tap for fewer steps...
Find the x-intercept.
Tap for more steps...
x-intercept(s):
(
3
2
,
0
)
Find the y-intercept.
Tap for more steps...
y-intercept(s):
(
0
,
−
3
)
Create a table of the
x
and
y
values.
x
y
0
−
3
3
2
0
I'm so sorry it layed out like this my computer is being st00pid