Answer:
5xy-x^2t+2x7+3x^2t= 7xy+2x^2t
Step-by-step explanation:
I believe it’s 113 because you subtract 180-67
Answer:
E
Step-by-step explanation:
We are given that a particle's position along the x-axis at time <em>t </em>is modeled by:

And we want to determine at which time(s) <em>t</em> is the particle at rest.
If the particle is at rest, this suggests that its velocity at that time is 0.
Since are we given the position function, we can differentiate it to find the velocity function.
So, by differentiating both sides with respect to <em>t</em>, we acquire:
![\displaystyle x^\prime(t)=v(t)=\frac{d}{dt}\big[2t^3-21t^2+72t-53\big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E%5Cprime%28t%29%3Dv%28t%29%3D%5Cfrac%7Bd%7D%7Bdt%7D%5Cbig%5B2t%5E3-21t%5E2%2B72t-53%5Cbig%5D)
Differentiate. So, our velocity function is:

So, we will set the velocity to 0 and solve for <em>t</em>. Hence:

We can divide both sides by 6:

Factoring yields:

By the Zero Product Property:

Hence:

Therefore, at the 3rd and 4th seconds, the velocity of the particle is 0, impling that the particle is at rest.
Our answer is E.
Answer:
Recall each angle in a rectangle is 90 degrees. So to find the other portion, subtract the given angle from the 90 degrees.
Step-by-step explanation:
Answer:
Step-by-step explanation:
C) x1/4y1/2