Rewriting the function as an equation y=r,14"
5+r/14
Answer:
1920 yd³
Step-by-step explanation:
A.)
<span>s= 30m
u = ? ( initial velocity of the object )
a = 9.81 m/s^2 ( accn of free fall )
t = 1.5 s
s = ut + 1/2 at^2
\[u = \frac{ S - 1/2 a t^2 }{ t }\]
\[u = \frac{ 30 - ( 0.5 \times 9.81 \times 1.5^2) }{ 1.5 } \]
\[u = 12.6 m/s\]
</span>
b.)
<span>s = ut + 1/2 a t^2
u = 0 ,
s = 1/2 a t^2
\[s = \frac{ 1 }{ 2 } \times a \times t ^{2}\]
\[s = \frac{ 1 }{ 2 } \times 9.81 \times \left( \frac{ 12.6 }{ 9.81 } \right)^{2}\]
\[s = 8.0917...\]
\[therfore total distance = 8.0917 + 30 = 38.0917.. = 38.1 m \] </span>
Answer: 18
Step-by-step explanation:
By the angle bisector theorem, 
Let
x = # of <span>$5 dollar bills
y = </span># of <span>$10 dollar bills
x + y = 12 so x = 12 - y
5x + 10y = 95
substitute </span>x = 12 - y into 5x + 10y = 95
5x + 10y = 95
5(12 - y) + 10y = 95
60 - 5y + 10y = 95
5y = 35
y = 7
x = 12 - 7 = 5
answer
# of <span>$5 dollar bills = 5
</span># of $10 dollar bills = 7