Answer:
For this case we want to test if the the average monthly income of all students at college is at least $2000. Since the alternative hypothesis can't have an equal sign thne the correct system of hypothesis for this case are:
Null hypothesis (H0): 
Alternative hypothesis (H1): 
And in order to test this hypothesis we can use a one sample t or z test in order to verify if the true mean is at least 200 or no
Step-by-step explanation:
For this case we want to test if the the average monthly income of all students at college is at least $2000. Since the alternative hypothesis can't have an equal sign thne the correct system of hypothesis for this case are:
Null hypothesis (H0): 
Alternative hypothesis (H1): 
And in order to test this hypothesis we can use a one sample t or z test in order to verify if the true mean is at least 2000 or no
Answer:
Answer is in the attachment.
Step-by-step explanation:
To graph x>2 consider first x=2. x=2 is a vertical line and if you want to graph x>2 you need to shade to the right of the vertical line.
To graph x+y<2, I will solve for y first.
x+y<2
Subtract x on both sides:
y<-x+2
Consider the equation y=-x+2. This is an equation with y-intercept 2 and slope -1 or -1/1. So the line you have in that picture looks good for y=-x+2. Now going back to consider y<-x+2 means we want to shade below the line because we had y<.
Now where you see both shadings will be intersection of the shadings and will actually by your answer to system of inequalities you have. In my picture it is where you have both blue and pink.
I have a graph in the picture that shows the solution.
Also both of your lines will be solid because your question in the picture shows they both have equal signs along with those inequality signs.
Just in case my one graph was confusing, I put a second attachment with just the solution to the system.
Answer:
Arithmetic.
Common Difference: -24
Step-by-step explanation:
An arithmetic sequence is a sequence with the difference between two consecutive terms constant. The difference is called the common difference. A geometric sequence is a sequence with the ratio between two consecutive terms constant.
For arithmetic, to find the common difference we take any pair of successive numbers, and we subtract the first from the second.
For geometric, to find the common ratio can be found by dividing any term in the sequence by the previous term.