The definition of similar triangles says that 2 triangles are similar if they have the same shape but different size. There are two criteria to check for this:
1) If all angles in one triangle are equal to the angles in another one, then the 2 are equal.
2) If the sides have the same proportions, then the 2 triangles are similar.
1) We have that all the angles of the 2 triangles have an equal angle in the other triangle. In specific, Q is matched to B, P to A and R to C. Hence, since corresponding angles are congruent, the two triangles are similar.
2) Here we are given information about the sides of the triangles, so we will check the second criterion. We form the ratio of the largest sides of each trangle and the shortest sides. 30/5=6. For the shortest sides, 18/3=6. Finally for the middle sides, 24/4=6. Hence, we have that the triangles are similar since the ratios are equal. (it doesn't matter whether we take the bigger or the smaller side as a numerator, as long as we are consistent).
25 and then add the decimals they have to be aaddd by the two decimals
<span>1. 5564÷91
I know that 9 * 6 = 56
5564 rounds to 5600
91 rounds to 9
Since 56/9 = 6, then 5600/90 is the same as 560/9 = 60
The estimate is 60
2. </span><span>5391÷25
5391 sounds to 5400
25 is 1/4 of 100.
That means when you divide by 25, you can divide by 100 and multiply by 4.
5400/100 = 54
54 * 4 = 216
Estimate: 216
3. </span><span>explain how to estimate 498÷12
48/12 = 4
498 is little more than 480, so 498/12 is little more than 40
4. </span><span>which is the closest estimate for 2130÷ 33
A.7 B.17 C.70 D.700
2130/33
Round off the numerator and denominator to
2100/30
Reduce the fraction
210/3
Since I know that 21/3 = 7, then 210/3 = 70
Estimate: 70
</span>