1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fredd [130]
3 years ago
12

Let T: P2 → P3 be the transformation that maps a polynomial p(t) into the polynomial (t-2)p(t).

Mathematics
1 answer:
lutik1710 [3]3 years ago
4 0

(a) Applying <em>T</em> to <em>p(t)</em> = 2 - <em>t</em> + <em>t</em> ² gives

<em>T</em> ( <em>p(t)</em> ) = (<em>t</em> - 2) (2 - <em>t</em> + <em>t</em> ²) = -4 + 4<em>t</em> - 3<em>t</em> ² + <em>t</em> ³

(b) <em>T</em> is a linear transformation if for any <em>p(t)</em> and <em>q(t)</em> in <em>P</em>₂ and complex scalars <em>a</em> and <em>b</em>, the image of any linear combination of <em>p</em> and <em>q</em> is equal to the linear combination of the images of <em>p</em> and <em>q</em>. In other words,

<em>T</em> ( <em>a</em> <em>p(t)</em> + <em>b</em> <em>q(t)</em> ) = <em>a</em> <em>T</em> ( <em>p(t)</em> ) + <em>b</em> <em>T</em> ( <em>q(t)</em> )

Let

<em>p(t)</em> = <em>α</em>₀ + <em>α</em>₁ <em>t</em> + <em>α</em>₂ <em>t</em> ²

<em>q(t)</em> = <em>β</em>₀ + <em>β</em>₁ <em>t</em> + <em>β</em>₂ <em>t</em> ²

Compute the images of <em>p</em> and <em>q</em> :

<em>T</em> ( <em>p(t)</em> ) = (<em>t</em> - 2) (<em>α</em>₀ + <em>α</em>₁ <em>t</em> + <em>α</em>₂ <em>t</em> ²)

… = -2<em>α</em>₀ + (<em>α</em>₀ - 2<em>α</em>₁) <em>t</em> + (<em>α</em>₁ - 2<em>α</em>₂) <em>t</em> ² + <em>α</em>₂ <em>t</em> ³

Similarly,

<em>T</em> ( <em>q(t)</em> ) = -2<em>β</em>₀ + (<em>β</em>₀ - 2<em>β</em>₁) <em>t</em> + (<em>β</em>₁ - 2<em>β</em>₂) <em>t</em> ² + <em>β</em>₂ <em>t</em> ³

Then

<em>a</em> <em>T</em> ( <em>p(t)</em> ) + <em>b</em> <em>T</em> ( <em>q(t)</em> ) = <em>a</em> (-2<em>α</em>₀ + (<em>α</em>₀ - 2<em>α</em>₁) <em>t</em> + (<em>α</em>₁ - 2<em>α</em>₂) <em>t</em> ² + <em>α</em>₂ <em>t</em> ³) + <em>b</em> (-2<em>β</em>₀ + (<em>β</em>₀ - 2<em>β</em>₁) <em>t</em> + (<em>β</em>₁ - 2<em>β</em>₂) <em>t</em> ² + <em>β</em>₂ <em>t</em> ³)

… = <em>c</em>₀ + <em>c</em>₁ <em>t</em> + <em>c</em>₂ <em>t</em> ² + <em>c</em>₃ <em>t</em> ³

where

<em>c</em>₀ = -2 (<em>a</em> <em>α</em>₀ + <em>b</em> <em>β</em>₀)

<em>c</em>₁ = <em>a</em> (<em>α</em>₀ - 2<em>α</em>₁) + <em>b</em> (<em>β</em>₀ - 2<em>β</em>₁)

<em>c</em>₂ = <em>a</em> (<em>α</em>₁ - 2<em>α</em>₂) + <em>b</em> (<em>β</em>₁ - 2<em>β</em>₂)

<em>c</em>₃ = <em>a</em> <em>α</em>₂ + <em>b</em> <em>β</em>₂

Computing the image of <em>a</em> <em>p(t)</em> + <em>b</em> <em>q(t)</em> would give the same result; just multiply it by <em>t</em> - 2 and expand. This establishes that <em>T</em> is indeed linear.

(c) Find the image of each vector in the basis for <em>P</em>₂ :

<em>T</em> (1) = (<em>t</em> - 2) × 1 = <em>t</em> - 2

<em>T</em> (<em>t</em> ) = (<em>t</em> - 2) <em>t</em> = <em>t</em> ² - 2<em>t</em>

<em>T</em> (<em>t</em> ²) = (<em>t</em> - 2) <em>t</em> ² = <em>t</em> ³ - 2<em>t</em> ²

Then

T=\begin{bmatrix}-2&0&0\\1&-2&0\\0&1&-2\\0&0&1\end{bmatrix}

You might be interested in
Use properties to find the sum 3 x 40 x 6
pogonyaev
You take 3•4 to get 12, then you add a zero to that and get 120. You then multiply by six and get 720.
6 0
3 years ago
Please help! ( problem is in the picture)
Andreas93 [3]

Answer:

o

Step-by-step explanation:

,,hggjj,........,.........

3 0
3 years ago
Landen spent L hours at the beach last weekend. Matéo spent 15% fewer hours at the beach than Landen did.
andre [41]

Answer:

L(1-0.15)

L-(15/100)L

Step-by-step explanation:

we  know that

100%-15%=85%

85%=85/100=0.85

so

The number of hours that Mateo spent at the beach last week is equal to the hours that landen spent at the beach (L) multiplied by 0.85

The linear equation that represent this situation is

0.85L  

<u><em>Equivalent expressions are</em></u>

1) L(1-0.15)

Because

Applying distributive property

L(1-0.15)=L-0.15L

Combine like terms

L-0.15L=0.85L

2) L-(15/100)L

because

15/100=0.15

substitute

L-(15/100)L=L-(0.15)L=0.85L

8 0
3 years ago
Every week malik spends 5 2/15 hours doing his math homework and 2 13/30 hours doing his science homework. Estimate how much mor
ArbitrLikvidat [17]
This is Simple, Just Subtract Time taken by Science homework from time taken by Maths homework..

= 5 \frac{2}{15} - 2 \frac{13}{30} \\ = \frac{150}{15} - \frac{73}{30} \\ = \frac{300 - 73}{30} \\ = \frac{227}{30} \\ = 7 \frac{17}{30} \: hours \: more.

!! Hope It Helps !!
3 0
4 years ago
Is this true or false
Bas_tet [7]

Answer:

true is the answer off this question

8 0
3 years ago
Read 2 more answers
Other questions:
  • On the next trip the Hans leave 10 cans of dog food for 4 days.how much food will the dogs get each day is trish feeds them an e
    8·1 answer
  • Solve -2/3 x &gt; 8 or -2/3x &lt;4
    9·1 answer
  • Quadrilateral QU AD is inscribed in circle O.<br> What is the measure of<br> D?
    5·1 answer
  • If g(x) = 3x-2, find g(8) -g(-5)
    12·2 answers
  • Simplify using the identity −2 /7 x 1/5 + 1/3 - 4/5 x - 2/7​
    13·1 answer
  • What is the inverse of the function f(x) = 2x + 1?
    7·1 answer
  • Solve x - 9 = 3 + y for y.
    15·2 answers
  • Plzzz help meh 10 points is all i can give
    5·1 answer
  • Find the percent of change for 25 is decreased to 10.
    7·1 answer
  • How many solutions are there to the equation below?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!