Answer:
B
Step-by-step explanation:
positive 3
1. The terms of a sequence are denoted by

2.

3. so it is clear that the first columns add each time by one, and the second column add by 2, then by 4, by 6, by 8 and so on.
4. consider only the second column and how we get the terms, which we will call

:


5.
So
![u_{n}=(n+1)(1+2{1+2+3+....(n-1)}) =(n+1)(1+2 [(n-1)n/2]) = (n+1)(1+(n-1)n) =(n+1)( n^{2}-n+1 ) ](https://tex.z-dn.net/?f=u_%7Bn%7D%3D%28n%2B1%29%281%2B2%7B1%2B2%2B3%2B....%28n-1%29%7D%29%0A%20%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%20%3D%28n%2B1%29%281%2B2%20%5B%28n-1%29n%2F2%5D%29%0A%0A%20%20%20%20%20%20%20%20%20%3D%20%28n%2B1%29%281%2B%28n-1%29n%29%0A%20%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%20%3D%28n%2B1%29%28%20n%5E%7B2%7D-n%2B1%20%29%0A%20%20%20%20%20%20%20%20%20)
6. We can check:

7. Remark: Gauss addition formula: 1+2+3+....+n=n(n+1)/2
Step-by-step explanation:
I need to use the fact that it has exactly one root to find the y part - do I use the quadratic formula on the last bit I have written?
I have x already and z = x+iy
30(x) - 65 = 565, X represents the amount of paychecks he has to cash in and the -65 is the money he has to pay back first.