SCA is a common monogenic blood disorder with potentially devastating consequences due to chronic and episodic disease; it has a massive impact on the health-care system and is linked to a significant reduction in life span.
We show that gene therapy with a lentivirus vector expressing γ-globin has the potential for a one-time cure and define the parameters required to cure the disease. We also show a preclinical in vivo method for determining the minimal amount of genetically corrected hematopoietic stem cells needed to correct disease, which is important in the design of clinical gene therapy trials.
The expression of the γ-globin gene in hematopoietic stem cells (HSCs) results in enough postnatal fetal hemoglobin (HbF) to correct sickle cell anemia (SCA) in the Berkeley "humanized" sickle mouse. We assessed critical parameters for correction after de-escalating the number of transduced HSCs in transplant recipients using reduced-intensity conditioning and varying gene transfer efficiency and vector copy number.
The minimal amount of HbF, F cells, HbF/F-cell, and gene-modified HSCs required for correcting the sickle phenotype was determined using a systematic quantification of functional and hematologic red blood cell (RBC) indices, organ pathology, and life span.
To learn more about sickle cell anemic from the given link
brainly.com/question/17063471
#SPJ4
Answer:
G= 22%
A=28%
T= 28%
Explanation:
Given that percentage of cytosine content (C) = 22%
Since C pairs with G, percentage of guanine content (G) would also be = 22%
Hence, G+C = 22+22 = 44%
This means that A+T = 100-44= 56%
Since adenine pairs with thymine so, percentage of A= percentage of T
Hence percentage of Adenine (A)= 56/2 = 28%
And percentage of Thymine (T) = 28%
Answer:
ANSWER: C dictonary
Explanation:
I took the test it is C a dictonary