I pretty sure it’s a linear function
The coordinates for point R will be (-1, -6). This is because a rectangle has opposite sides and as you plot your rectangle with these defines points along with that of R, you will be able to successfully achieve a perfect rectangle.
Step-by-step explanation:
![A=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D)
![B=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D)
![C=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]](https://tex.z-dn.net/?f=C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D)
![D=\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]](https://tex.z-dn.net/?f=D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D)
![1.\\A+B=\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]+\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]=\left[\begin{array}{ccc}3+4&1+1\\5+6&7+0\end{array}\right]=\left[\begin{array}{ccc}7&2\\11&7\end{array}\right]](https://tex.z-dn.net/?f=1.%5C%5CA%2BB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%2B4%261%2B1%5C%5C5%2B6%267%2B0%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%262%5C%5C11%267%5Cend%7Barray%7D%5Cright%5D)
![2.\\B-A=\left[\begin{array}{ccc}4&1\\6&0\end{array}\right]-\left[\begin{array}{ccc}3&1\\5&7\end{array}\right]=\left[\begin{array}{ccc}4-3&1-1\\6-5&0-7\end{array}\right]=\left[\begin{array}{ccc}1&0\\1&-7\end{array}\right]](https://tex.z-dn.net/?f=2.%5C%5CB-A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4%261%5C%5C6%260%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%261%5C%5C5%267%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D4-3%261-1%5C%5C6-5%260-7%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C1%26-7%5Cend%7Barray%7D%5Cright%5D)
![3.\\3C=3\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]=\left[\begin{array}{ccc}(3)(-2)&(3)(3)&(3)(1)\\(3)(-1)&(3)(0)&(3)(4)\end{array}\right]=\left[\begin{array}{ccc}-6&9&3\\-3&0&12\end{array}\right]](https://tex.z-dn.net/?f=3.%5C%5C3C%3D3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%283%29%28-2%29%26%283%29%283%29%26%283%29%281%29%5C%5C%283%29%28-1%29%26%283%29%280%29%26%283%29%284%29%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%269%263%5C%5C-3%260%2612%5Cend%7Barray%7D%5Cright%5D)
![4.\\C\cdot D=\left[\begin{array}{ccc}-2&3&1\\-1&0&4\end{array}\right]\cdot\left[\begin{array}{ccc}-2&3&4\\0&-2&1\\3&4&-1\end{array}\right]\\\\=\left[\begin{array}{ccc}(-2)(-2)+(3)(0)+(1)(3)&(-2)(3)+(3)(-2)+(1)(4)&(-2)(4)+(3)(1)+(1)(-1)\\(-1)(-2)+(0)(0)+(4)(3)&(-1)(3)+(0)(-2)+(4)(4)&(-1)(4)+(0)(1)+(4)(-1)\end{array}\right]\\=\left[\begin{array}{ccc}7&-8&-6\\14&13&-8\end{array}\right]](https://tex.z-dn.net/?f=4.%5C%5CC%5Ccdot%20D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%261%5C%5C-1%260%264%5Cend%7Barray%7D%5Cright%5D%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%264%5C%5C0%26-2%261%5C%5C3%264%26-1%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-2%29%28-2%29%2B%283%29%280%29%2B%281%29%283%29%26%28-2%29%283%29%2B%283%29%28-2%29%2B%281%29%284%29%26%28-2%29%284%29%2B%283%29%281%29%2B%281%29%28-1%29%5C%5C%28-1%29%28-2%29%2B%280%29%280%29%2B%284%29%283%29%26%28-1%29%283%29%2B%280%29%28-2%29%2B%284%29%284%29%26%28-1%29%284%29%2B%280%29%281%29%2B%284%29%28-1%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%26-8%26-6%5C%5C14%2613%26-8%5Cend%7Barray%7D%5Cright%5D)

Answer:
The perimeter is 30 units
Step-by-step explanation:
To find the perimeter of SOW, what we need to do is to add all the lengths around the triangle together.
But we only have OS, we do not have OW and WS. Thus , we need to get what the values of these lengths are before we can calculate the perimeter.
Please check the attachment for complete solution.
Answer:
1. Equation: 1 1/2 x 1 3/4
Solution: 2 5/8
2. Equation: 1 1/3 x 2 1/4
Solution: 3
Step-by-step explanation:
Hope this helps.