Explanation:
Policy-makers have two broad types of instruments available for changing consumption and production habits in society. They can use traditional regulatory approaches (sometimes referred to as command-and-control approaches) that set specific standards across polluters, or they can use economic incentive or market-based policies that rely on market forces to correct for producer and consumer behavior. Incentives are extensively discussed in several EPA reports
Two basic types of traditional regulatory approaches exist. The first, a technology or design standard, mandates specific control technologies or production processes that polluters must use to meet an emissions standard. The second, a performance-based standard, also requires that polluters meet an emissions standard, but allows the polluters to choose any available method to meet that standard. Performance-based standards that are technology-based, for example, do not specify a particular technology, but rather consider what available and affordable technologies can achieve when establishing a limit on emissions. At times, EPA may completely ban or phase out the use or production of a particular product or pollutant, as it has done with chlorofluorocarbons (CFCs) and certain pesticides. Regulations can be uniform or can vary according to size of the polluting entity, production processes, or similar factors. Regulations are often tailored in this manner so that similar regulated entities are treated equally. MARK AS BRAINLIEST IF IT HELPS
Adenylate cyclases (ACs) are the membrane-bound glycoproteins that convert ATP to cAMP and pyrophosphate.
When activated by G-protein Gs, adenylate cyclases (ACs), which are membrane-bound glycoproteins, catalyze the synthesis of cAMP from ATP.
Different AC isoforms are widely expressed in various tissues that participate in regulatory systems in response to particular stimuli.
Humans have 9 different AC isoforms, with AC5 and AC6 thought to be particularly important for cardiac activities.
Nitric oxide has an impact on the activity of AC6, hence the protein's nitrosylation may control how it works. However, little is known about the structural variables that affect nitrosylation in ACs and how they relate to G's.
We predict the cysteines that are prone to nitrosylation using this 3D model, and we use virtual ligand screening to find potential new AC6 ligands.
According to our model, the AC-Gs interface's Cys174 in G's and Cys1004 in AC6 (subunit C2) are two potential residues that could experience reversible nitrosylation.
Learn more about glycoproteins here brainly.com/question/9507947
#SPJ4
The answer is B) Limiting factors.
Hope this Helps!!
Answer:
A) Nucleus and Ribosome
Explanation:
Diabetes can be a very chronic disease if not properly controlled, it mostly affect the aged people. If not properly treated it can in some cases lead to the death of the individual.
Diabetes occurs when the pancreas in the body system does not produce any insulin, the insulin is a type of hormone that is found in the body, this hormone helps to normalize the amount of blood sugar that is present in the human body.
The two organelles in the pancreas that is responsible for the production of insulin in the body is; nucleus and ribosome