P=2
Work:
<span><span><span>7p</span>−<span>(<span><span>3p</span>+4</span>)</span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span>7p</span>−<span>(<span><span>3p</span>+4</span>)</span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span>7p</span>+<span><span>−1</span><span>(<span><span>3p</span>+4</span>)</span></span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span>7p</span>+<span><span>−1</span><span>(<span>3p</span>)</span></span></span>+<span><span>(<span>−1</span>)</span><span>(4)</span></span></span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span>−<span>2<span>(<span><span>2p</span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span><span><span>(<span>−2</span>)</span><span>(<span>2p</span>)</span></span>+<span><span>(<span>−2</span>)</span><span>(<span>−1</span>)</span></span></span>+10</span></span><span><span><span><span><span><span>7p</span>+</span>−<span>3p</span></span>+</span>−4</span>=<span><span><span>−<span>4p</span></span>+2</span>+10</span></span><span><span><span>(<span><span>7p</span>+<span>−<span>3p</span></span></span>)</span>+<span>(<span>−4</span>)</span></span>=<span><span>(<span>−<span>4p</span></span>)</span>+<span>(<span>2+10</span>)</span></span></span><span><span><span>4p</span>+<span>−4</span></span>=<span><span>−<span>4p</span></span>+12</span></span><span><span><span>4p</span>−4</span>=<span><span>−<span>4p</span></span>+12</span></span><span><span><span><span>4p</span>−4</span>+<span>4p</span></span>=<span><span><span>−<span>4p</span></span>+12</span>+<span>4p</span></span></span><span><span><span>8p</span>−4</span>=12</span><span><span><span><span>8p</span>−4</span>+4</span>=<span>12+4</span></span><span><span>8p</span>=16</span><span><span><span><span><span>8p</span>8</span></span></span>=<span><span><span>168</span></span></span></span><span>p=<span>2
Hope this helps:)</span></span>
Answer:
x^4 -53x^2 +108x +160
Step-by-step explanation:
If <em>a</em> is a zero, then (<em>x-a</em>) is a factor. For the given zeros, the factors are ...
p(x) = (x +8)(x +1)(x -4)(x -5)
Multiplying these out gives the polynomial in standard form.
= (x^2 +9x +8)(x^2 -9x +20)
We note that these factors have a sum and difference with the same pair of values, x^2 and 9x. We can use the special form for the product of these to simplify our working out.
= (x^2 +9x)(x^2 -9x) +20(x^2 +9x) +8(x^2 -9x) +8(20)
= x^4 -81x^2 +20x^2 +180x +8x^2 -72x +160
p(x) = x^4 -53x^2 +108x +160
_____
The graph shows this polynomial has the required zeros.
H(x)=5x+15+4x+20
if x=4, together it would be 5(4)+15+4(4)+20
h(x)=20+15+16+20=71
Divided by 2, they'd each get 35.5
If Frank worked alone, he'd get 5(4)+15= 35
He'd make more working together.
The one u clicked one is the answer ?
Answer:
Angle DGF = DEF
Step-by-step explanation:
Since all the angles are congruent in the diagram and the hypothenuses are both congruent, it makes the other triangle, DEF congruent to DGF.
In other words, sense all 3 angles are congruent and they share a side, DEF is congruent to DGF.