Answer:
-5
Step-by-step explanation:
“x” would be multiplication, right?
Answer:
a) 95% of the widget weights lie between 29 and 57 ounces.
b) What percentage of the widget weights lie between 12 and 57 ounces? about 97.5%
c) What percentage of the widget weights lie above 30? about 97.5%
Step-by-step explanation:
The empirical rule for a mean of 43 and a standard deviation of 7 is shown below.
a) 29 represents two standard deviations below the mean, and 57 represents two standard deviations above the mean, so, 95% of the widget weights lie between 29 and 57 ounces.
b) 22 represents three standard deviations below the mean, and the percentage of the widget weights below 22 is only 0.15%. We can say that the percentage of widget weights below 12 is about 0. Equivalently we can say that the percentage of widget weights between 12 an 43 is about 50% and the percentage of widget weights between 43 and 57 is 47.5%. Therefore, the percentage of the widget weights that lie between 12 and 57 ounces is about 97.5%
c) The percentage of widget weights that lie above 29 is 47.5% + 50% = 97.5%. We can consider that the percentage of the widget weights that lie above 30 is about 97.5%
Here are a few things you'll need to know for this question:
- Domain: <u>The list of x-values that are possible on a line.</u>
- Range: <u>The list of y-values that are possible on a line.</u>
- Interval Notation: <u>Shows the domain/range using the endpoints</u>. Brackets mean that the endpoint is included, parentheses mean the endpoint is excluded. Ex: (2,10]. 2 is excluded, 10 is included.
- Closed Circles: <u>The endpoint is included.</u>
- Open Circles: <u>The endpoint is excluded.</u>
So firstly, let's look at the domain. We see that there is a closed circle at x = -2 and an open circle at x = 5. Using what we know, <u>the interval notation of the domain is [-2,5).</u>
Next, let's look at the range. We see that there is a closed circle at y = -5 and an open circle at y = 2. Using what we know, <u>the interval notation of the range is [-5,2).</u>
Answer:
(-3, 2)
Step-by-step explanation:
Given that point Q, partitions segment PE, such that PQ:QE is 1:3, coordinates of point Q is found using the formula below:


Where,



Plug in the necessary values to find x and y coordinates for point Q as follows:










The coordinates of the point Q are (-3, 2))