Answer:
Se pueden formar 9 números pares.
Step-by-step explanation:
Dado que con cuatro cartas se pueden formar diferentes números, como por ejemplo 8232 o 3822, para determinar cuántos números pares de cuatro dígitos y diferentes puedes formar con estas cuatro cartas se debe realizar la siguiente tabla:
8232 - 8322 - 8223 = 2 pares 1 impar
2832 - 2823 - 2382 - 2328 - 2283 - 2238 = 4 pares 2 impares
3822 - 3282 - 3228 = 3 pares
Por lo tanto, se pueden formar 9 números pares.
I would compute sqrt(1 + 160pi^2) first to get approximately 39.75093337
Add this to 1 and we have 40.75093337
Then divide over 2pi to get a final approximate result of 6.48571248
So x = 6.48571248 is one approximate solution
In short, I computed
only focusing on the plus for now.
----------------------
If you were to compute
you should get roughly -6.167402596 as your other solution. Each solution can then be plugged into the original equation to check if you get 0 or not. You likely won't land exactly on 0 but you'll get close enough.
Answer:
Step-by-step explanation:
<h3>
<u>Required</u><u> Answer</u><u>:</u><u>-</u></h3>
This is an right angle ∆ and the side lengths containing a right angle are 9 and 11.
By Pythagoras theoram,

where p is the perpendicular, b is the base and h is the hypotenuse.
Plugging the values,

Then,


<h3>
<u>Hence:</u><u>-</u></h3>
The x of the right angled ∆ = <u>1</u><u>4</u><u>.</u><u>1</u><u>2</u>