To find the maximum or minimum value of a function, we can find the derivative of the function, set it equal to 0, and solve for the critical points.
H'(t) = -32t + 64
Now find the critical numbers:
-32t + 64 = 0
-32t = -64
t = 2 seconds
Since H(t) has a negative leading coefficient, we know that it opens downward. This means that the critical point is a maximum value rather than a minimum. If we weren't sure, we could check by plugging in a value for t slightly less and slighter greater than t=2 into H'(t):
H'(1) = 32
H'(3) = -32
As you can see, the rate of change of the object's height goes from increasing to decreasing, meaning the critical point at t=2 is a maximum.
To find the height, plug t=2 into H(t):
H(2) = -16(2)^2 +64(2) + 30 = 94
The answer is 94 ft at 2 sec.
First find the critical points of <em>f</em> :



so the point (1, 0) is the only critical point, at which we have

Next check for critical points along the boundary, which can be found by converting to polar coordinates:

Find the critical points of <em>g</em> :



where <em>n</em> is any integer. We get 4 critical points in the interval [0, 2π) at




So <em>f</em> has a minimum of -7 and a maximum of 299.
Answer:
x= 3 over 10 =0.300
Step-by-step explanation:
Hope this helps!
Sallys statement is always true
for example:
-6 + 2 = -4
but if I turn it around
2 - 6 = -4
same answer
-6 -6 = -12
swap around -6 - 6 = 12
same answer
again -3 + 6 = 3
and 6 - 3 = 3