Answer:
Modulator Demodulator
Step-by-step explanation:
0.4 is four tenths. 0.4 = 4/10=2/5
(a) When f is increasing the derivative of f is positive.
f'(x) = 15x^4 - 15x^2 > 0
15x^2(x^2 - 1)> 0
x^2 - 1 > 0 (The inequality doesn't flip sign since x^2 is positive)
x^2 > 1
Then f is increasing when x < -1 and x > 1.
(b) The f is concave upward when f''(x) > 0.
f''(x) = 60x^3 - 30x > 0
30x(2x^2 - 1) > 0
x(2x^2 - 1) > 0
x(x^2 - 1/2) > 0
x(x - 1/sqrt(2))(x + 1/sqrt(2)) > 0
There are four regions here. We will check if f''(x) > 0.
x < -1/sqrt(2): f''(-1) = -30 < 0
-1/sqrt(2) < x < 0: f''(-0.5) = 7.5 > 0
0 < x < 1/sqrt(2): f''(0.5) = -7.5 < 0
x > 1/sqrt(2): f''(1) = 30 > 0
Thus, f''(x) > 0 at -1/sqrt(2) < x < 0 and x > 1/sqrt(2).
Therefore, f is concave upward at -1/sqrt(2) < x < 0 and x > 1/sqrt(2).
(c) The horizontal tangents of f are at the points where f'(x) = 0
15x^2(x^2 - 1) = 0
x^2 = 1
x = -1 or x = 1
f(-1) = 3(-1)^5 - 5(-1)^3 + 2 = 4
f(1) = 3(1)^5 - 5(1)^3 + 2 = 0
Therefore, the tangent lines are y = 4 and y = 0.
Apply the rule: 
![3[2 ln(x-1) - lnx] + ln(x+1)=3[ln(x-1)^{2} - lnx ] + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3%5Bln%28x-1%29%5E%7B2%7D%20-%20lnx%20%5D%20%2B%20ln%28x%2B1%29)
Apply the rule : 
![3[2 ln(x-1) - lnx] + ln(x+1)=3ln\frac{(x-1)^{2} }{x} + ln(x+1)](https://tex.z-dn.net/?f=3%5B2%20ln%28x-1%29%20-%20lnx%5D%20%2B%20ln%28x%2B1%29%3D3ln%5Cfrac%7B%28x-1%29%5E%7B2%7D%20%7D%7Bx%7D%20%2B%20ln%28x%2B1%29)
Apply the rule: 
![3[ln (x-1)^{2} -ln x]+ln (x+1)= ln \frac{(x-1)^{6} }{x^{3} } +log(x+1)](https://tex.z-dn.net/?f=3%5Bln%20%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Bln%20%28x%2B1%29%3D%20ln%20%5Cfrac%7B%28x-1%29%5E%7B6%7D%20%7D%7Bx%5E%7B3%7D%20%7D%20%2Blog%28x%2B1%29)
Finally, apply the rule: log a + log b = log ab
![3[ln(x-1)^{2} -ln x]+log(x+1)=ln\frac{(x-1)^{6}(x+1) }{x^{3} }](https://tex.z-dn.net/?f=3%5Bln%28x-1%29%5E%7B2%7D%20-ln%20x%5D%2Blog%28x%2B1%29%3Dln%5Cfrac%7B%28x-1%29%5E%7B6%7D%28x%2B1%29%20%7D%7Bx%5E%7B3%7D%20%7D)