Answer:
6040
Step-by-step explanation:
You can find out in two different ways, either use scientific notation or a calculator. If you go 3 steps to the right (since it's a positive power) you will get 6040. Hope this helped. :)
Let's work on the left side first. And remember that
the<u> tangent</u> is the same as <u>sin/cos</u>.
sin(a) cos(a) tan(a)
Substitute for the tangent:
[ sin(a) cos(a) ] [ sin(a)/cos(a) ]
Cancel the cos(a) from the top and bottom, and you're left with
[ sin(a) ] . . . . . [ sin(a) ] which is [ <u>sin²(a)</u> ] That's the <u>left side</u>.
Now, work on the right side:
[ 1 - cos(a) ] [ 1 + cos(a) ]
Multiply that all out, using FOIL:
[ 1 + cos(a) - cos(a) - cos²(a) ]
= [ <u>1 - cos²(a)</u> ] That's the <u>right side</u>.
Do you remember that for any angle, sin²(b) + cos²(b) = 1 ?
Subtract cos²(b) from each side, and you have sin²(b) = 1 - cos²(b) for any angle.
So, on the <u>right side</u>, you could write [ <u>sin²(a)</u> ] .
Now look back about 9 lines, and compare that to the result we got for the <u>left side</u> .
They look quite similar. In fact, they're identical. And so the identity is proven.
Whew !
UMMMMMMMMMMMMMMMMMMMMMMMMM
Answer:
135°
Step-by-step Explanation:
==>Given:
An inscribed quadrilateral ABCD with,
m<A = (3x +6)°
m<C = (x + 2)°
==>Required:
measure of angle A
==>Solution:
First, let's find the value of x.
Recall that the opposite angles in any inscribed quadrilateral in a circle are supplementary.
Therefore, this means m<A + m<C = 180°
Thus, (3x+6) + (x+2} = 180
3x + 6 + x + 2 = 180
Collect like terms:
3x + x + 6 + 2 = 180
4x + 8 = 180
Subtract 8 from both sides:
4x + 8 - 8 = 180 - 8
4x = 172
Divide both sides by 4:
4x/4 = 172/4
x = 43
We can now find m<A = (3x + 6)°
m<A = 3(43) + 6
= 129 + 6
measure of angle A = 135°
Answer:
46.67
Step-by-step explanation: